Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tiny Motions Bring Digital Doubles to Life


Researchers at the Max Planck Institute for Intelligent Systems unveil new technology for motion and shape capture (MoSh) that helps animators jump the “Uncanny Valley” by turning a few moving dots into detailed body shapes that jiggle and deform like real humans.

Researchers at the Max Planck Institute for Intelligent Systems in Tübingen, Germany, announced today that their Motion and Shape Capture (MoSh) study, which appeared in the journal ACM Transactions on Graphics, will be presented at SIGGRAPH Asia ( in Shenzhen on December 6, 2014.

MoSh needs only sparse mocap marker data to create animations (purple parts) with a level of realism that is difficult to achieve with standard skeleton-based mocap methods. (green parts: 3D scans)

Picture: Perceiving Systems Department

Devised by a team of researchers under the direction of Dr. Michael J. Black, Director of the Perceiving Systems department, MoSh is a method that allows animators to record the three-dimensional (3D) motion and shape of a real human and digitally “retarget” it to a new body shape. With MoSh, realistic virtual humans can populate games, the Internet, and virtual reality, while reducing animation costs for the special effects industry.

Current Motion Capture (mocap) technology uses dozens of high-speed cameras to capture 3D position and motion data from a few reflective markers attached to a person’s body and face. This marker data is then converted into a moving skeleton that controls a digital character, much like a puppeteer controls a puppet. Mocap is widely criticized because this can result in eerily lifeless animations. Consequently mocap serves as only a starting point for the time-consuming and expensive hand animation by experts who put life into the movements of animated characters..

MoSh changes this labor-intensive approach by using a sophisticated mathematical model of human shape and pose, which, is used to compute body shape and motion directly from the 3D marker positions. The MoSh approach lets mocap data be transferred to any new virtual shape automatically. For example, the researchers captured the motion of an elegant female salsa dancer and then changed the body shape to that of a giant ogre, making him look light on his feet. “We can take the motions of one body and simply transfer them to another body resulting in a realistic animation,” says Matthew Loper, the lead author of the study.

And, because MoSh does not rely on a skeletal approach to animation, the details of body shape – such as breathing, muscle flexing, fat jiggling – are retained from the mocap marker data. Current methods throw such important details away and rely on manual animation techniques to apply them after the fact.

“Everybody jiggles,” according to Black, adding: “we were surprised by how much information is present in so few markers. This means that existing motion capture data may contain a treasure trove of realistic performances that MoSh can bring to life.”

Naureen Mahmood, one of the co-authors of the study noted, “realistically rigging and animating a 3D body requires expertise. MoSh will let anyone use motion capture data to achieve results approaching professional animation quality.” This means that realistic digital humans may be coming to video games, training videos, and new virtual-reality headsets.

Opening up realistic human animation to new markets, Max Planck has licensed its technology to Body Labs (, a technology company that transforms the human body into a digital platform from which goods and services can be designed, created, and sold. “MoSh has a host of applications,” says William O’Farrell, co-founder CEO of Body Labs. “The obvious application is enhancing the quality and reducing the cost of animations from mocap; but, we also see extensive uses in apparel. MoSh makes high-end effects accessible to the clothing industry and finally allows clothing designers and customers to easily visualize garments on realistic moving bodies.”

Original Paper
Loper, M.M., Mahmood, N. and Black, M.J., MoSh: Motion and Shape Capture from Sparse Markers, ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 33(6): 220:1-220:13, November 2014. doi:

Weitere Informationen:

Claudia Däfler | Max-Planck-Institut für Intelligente Systeme

Further reports about: ACM Bring Digital Life Max Planck Institute Max-Planck-Institut SIGGRAPH Transactions clothing controls humans markers

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>