Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Flexible Grid Involves its Users


The GreenCom project, funded in part by the European Commission and led on the technical side by Fraunhofer FIT, ended after 42 months, judged a resounding success. The project's main result is a Smart Energy Monitoring and Control system for load management of regional power grids. A test environment comprising 29 homes on the Danish island Fur integrates heat pumps, photovoltaic systems, batteries and smart-home installations.

The growing share of renewable energy sources leads to wider load fluctuations in power grids, necessitating new concepts and ways to avoid overload. What is needed is a flexible smart grid able to adjust to the fluctuations in the production and the consumption of electricity. Here, the GreenCom project focused on regional smart grid solutions that may help to avoid or minimize the need for grid expansion on the national level.

Load distribution in the Fur grid. Colors represent the load levels on power lines and transformer stations: Green stands for optimal load, Red for very high and Purple for critically high load.

© Fraunhofer FIT

Fur, the Danish island.


The aim was to detect potential instabilities in power grids by monitoring and forecasting how much power will be generated and consumed in the households attached to the grid. On the basis of forecasts and real-time data the GreenCom system can take load-balancing measures on a regional level, allowing for an improved balance of supply and demand.

The GreenCom project implemented a realistic test environment: On the Danish island Fur we worked with the local grid operator to install the “Smart Energy Monitoring and Control System” in 29 homes. The system can capture, aggregate and analyze, almost in real-time, data on devices, sensors, actuator and smart meters in individual homes. Heat pumps, photovoltaic systems and batteries are attached to the system, but also the smart-home installations built by Fraunhofer FIT.

“The smart energy management system developed in the GreenCom project is a control platform that will significantly improve energy management. It is particularly well suited to smart cities and similar local communities”, says Dr. Markus Eisenhauer, head of the User-Centered Computing department of the Fraunhofer Institute for Applied Information Technology FIT.

The data analysis provides consumption data for different types of devices and locations as well as short-term forecasts (for up to 4 hours). This allows planning load-balancing measures. Large-scale power consumers in the homes are switched on at different times to avoid peak loads in the grid.

The forecasts and consumption data collected in the project were also used to analyze existing business models and develop new ones. The latter may feature a novel player in the market, which we call “aggregator”. Aggregators offer heating as a service: Homeowners allow their heat pumps to be controlled remotely and in exchange pay less for heating their homes. The contracts specify an acceptable temperate range. Thus the aggregator has some flexibility in reacting to fluctuating electricity supply and can sell this flexibility to the grid operator. This might be a model for controlling the electricity consumption of residential houses in the future.

The owners would only have to accept that the heat pump is under external control, without making any compromises in terms of heating comfort or usage pattern, as heat pumps do not have to work continuously and can be controlled remotely without any negative effects on the people living in the house. Here, reduced heating costs may be a convincing economic argument. If this model actually works on a broader scale remains to be seen in the coming years.

The GreenCom project, funded in part by the European Commission in the 7th Framework Programme for Research and Technological Development, was coordinated by the Italian Istituto Superiore Mario Boella (ISMB). Besides Fraunhofer FIT, the project consortium included the Danish partners EnergiMidt A/S, Actua A/S, Tyndall National Institute and In-JeT ApS as well as Sensing & Control Systems (Spain) and University College Cork (Ireland).

For additional information please see:

Alex Deeg | Fraunhofer-Institut für Angewandte Informationstechnik FIT
Further information:

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>