Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The app for frequent fliers and those who are radiation-conscious

15.04.2015

PTB awards licence for the calculation of radiation levels to start-up company

Frequent fliers are now able to monitor their personal radiation exposure when flying using the TrackYourDose app. Behind the app lies intensive research work undertaken by the Physikalisch-Technische Bundesanstalt (PTB).


Screenshot of the TrackYourDose app

Since 1997 PTB has studied the cosmic radiation at typical flight altitudes and, based on this, it has developed mathematical models for calculating radiation levels.

By licensing these mathematical models to the start-up company esooka, the wider public can now monitor their own radiation exposure during flights. For frequent fliers and others who are interested in doing this, an app has been on sale at the Apple Store since the end of 2014.

To study the worldwide distribution of radiation exposure through cosmic radiation, PTB's scientists developed a carry-on "flight case". This can measure all the relevant types of radiation, in particular neutron radiation which is produced in the atmosphere, with regard to their biological effectiveness.

The measurement value is called the "ambient dose equivalent" and is measured in microsieverts (µSv). A ten-hour flight across the North Atlantic, for instance, results in a radiation exposure of 50 µSv to 100 µSv. We can compare this to having an X-ray at the dentist's which may lead to between 2 µSv and 6 µSv, depending on the type of X-ray. In 2012, the total annual radiation exposure of a typical person in Germany through naturally occurring radiation came to about 2100 µSv (=2.1 mSv).

Using the flight case, PTB's scientists measured more than 2500 measurement points showing the "ambient dose equivalent rate", given in microsievert per hour (µSv/h), at flight altitudes between 8 km and 12 km worldwide between 1997 and 2006.

Suitable mathematical models and adjustment procedures allowed all the measurement values to be described with a simple mathematical function according to their geographical location, the flight altitude and solar activity. This procedure was put forward to the International Commission on Radiological Protection (ICRP) to define reference values of the ambient dose equivalent rates based on about 20,000 measurements.

Transferring the mathematical model developed by PTB to the esooka company has given the wider public access to radiation monitoring for individuals. This means that PTB is complying with two of its legal tasks at the same time: research on radiation protection and promoting German companies through technology transfers.

Using the TrackYourDose app, you enter the details of the airports you are flying from and to and the date you are travelling. Then the current solar activity for your flight is provided by the esooka server. This can mean large differences in the individual level of radiation exposure, especially for polar routes. esooka gets the data on solar activity from the neutron monitor of the University of Oulu in Finland.

But TrackYourDose can do more than that. Apart from cosmic radiation from air travel, everyone is exposed to natural radiation, gamma radiation and cosmic radiation on the ground (this is highly dependent on where you live).

In addition, medical examinations with ionizing radiation such as X-rays or CT scans lead to radiation exposure. By entering the radiological examinations you have had and the place where you live, additional exposures can be taken into account by the new app. This means that all your significant radiation exposures are covered by TrackYourDose.

Scientific publication on this subject:
F. Wissmann , M. Reginatto and T. Möller: The ambient dose equivalent at flight altitudes: a fit to a large set of data using a Bayesian approach. J. Radiol. Prot. 30 (2010) 513–524 doi:10.1088/0952-4746/30/3/006

Link to TrackYourDose app:
https://itunes.apple.com/de/app/trackyourdose/id909216331?mt=8

Further information is available from:
• Link to the company esooka http://www.esooka.de/
• Bundesamt für Strahlenschutz (Federal Office for Radiation Protection): Umweltradioaktivität und Strahlenbelastung im Jahr 2012: Unterrichtung der Bundesregierung (Environmental radioactivity and radiation exposure in the year 2012: Report to the Federal Government).
http://doris.bfs.de/jspui/handle/urn:nbn:de:0221-2014040311384

Weitere Informationen:

http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2015/pitext/pi150414.html,

Imke Frischmuth | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>