Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique developed to capture human movement in 3D

13.08.2008
Researchers from the Polytechnic University of Catalonia (UPC) and the University of Lovaina (UCL), in Belgium, have presented a technique that, using two video cameras to capture human movement, makes it possible to recognize body movements and display them in three dimension on a computer, according to the journal Multimedia Tools & Applications. The method can be applied to the development of interactive video games in which gestures are made with the hands and feet.

Engineer Pedro Correa, from the UCL Telecommunications and Teledetection Laboratory, told SINC that, together with professor Ferran Marqués's unit at the UPC, they have developed algorithms that tackle the problem of gesture recognition “in the least invasive way possible, since it does not require wearing any special suit or receivers, using a simple video camera to film the body's movement”.

The images filmed identify the person's outline several dozens of times a second, and the data obtained are analyzed by the algorithm invented by the researchers to identify the “crucial points”: head, hands and feet. The “crucial points extraction algorithm” uses the mathematical concept of geodesic distance to calculate the person's extremities, “in other words”, clarifies Correa, “which points are furthest away from the center of gravity, following a path entirely within the outline”.

Once the extremities have been obtained, the outline is analyzed once again to create "morphological skeletons" that help assign a label to each extremity. The five possible labels are head, left hand, right hand, left foot and right foot. Once identified, they are represented with colored dots for tracking in 2 dimensions. This enables the user to analyze the results visually.

To obtain the same information in 3 dimensions, the same steps are taken with an additional camera. This way, the triangulation of the labels extracted in each of the two views makes it possible to obtain the points in a three dimensional space. The front view provides information on the vertical and horizontal positions of the extremities, and the side view provides information on their depth.

The low level of complexity in this system allows it to be applied in real time on any personal computer, with a margin of error of between 4% and 9% in real situations, depending on the context and the quality of the segmentation carried out.

Correa explained that the applications of this technique are “all those that require motion interaction with the computer; that is, from browsing through applications in an operating system (like moving windows and text with hand movements) to interactive aerobic video games, and much more”. The study was also participated in by a Belgian company specializing in real-size video games, which are used, for example, in amusement parks and museums.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

Further reports about: Multimedia Tools gesture human movement operating system video cameras

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>