Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique developed to capture human movement in 3D

13.08.2008
Researchers from the Polytechnic University of Catalonia (UPC) and the University of Lovaina (UCL), in Belgium, have presented a technique that, using two video cameras to capture human movement, makes it possible to recognize body movements and display them in three dimension on a computer, according to the journal Multimedia Tools & Applications. The method can be applied to the development of interactive video games in which gestures are made with the hands and feet.

Engineer Pedro Correa, from the UCL Telecommunications and Teledetection Laboratory, told SINC that, together with professor Ferran Marqués's unit at the UPC, they have developed algorithms that tackle the problem of gesture recognition “in the least invasive way possible, since it does not require wearing any special suit or receivers, using a simple video camera to film the body's movement”.

The images filmed identify the person's outline several dozens of times a second, and the data obtained are analyzed by the algorithm invented by the researchers to identify the “crucial points”: head, hands and feet. The “crucial points extraction algorithm” uses the mathematical concept of geodesic distance to calculate the person's extremities, “in other words”, clarifies Correa, “which points are furthest away from the center of gravity, following a path entirely within the outline”.

Once the extremities have been obtained, the outline is analyzed once again to create "morphological skeletons" that help assign a label to each extremity. The five possible labels are head, left hand, right hand, left foot and right foot. Once identified, they are represented with colored dots for tracking in 2 dimensions. This enables the user to analyze the results visually.

To obtain the same information in 3 dimensions, the same steps are taken with an additional camera. This way, the triangulation of the labels extracted in each of the two views makes it possible to obtain the points in a three dimensional space. The front view provides information on the vertical and horizontal positions of the extremities, and the side view provides information on their depth.

The low level of complexity in this system allows it to be applied in real time on any personal computer, with a margin of error of between 4% and 9% in real situations, depending on the context and the quality of the segmentation carried out.

Correa explained that the applications of this technique are “all those that require motion interaction with the computer; that is, from browsing through applications in an operating system (like moving windows and text with hand movements) to interactive aerobic video games, and much more”. The study was also participated in by a Belgian company specializing in real-size video games, which are used, for example, in amusement parks and museums.

SINC Team | alfa
Further information:
http://www.plataformasinc.es

Further reports about: Multimedia Tools gesture human movement operating system video cameras

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>