Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steady aerial videos

13.07.2015

TU Wien and Dynamic Perspective have developed an electronically controlled camera suspension system for capturing razor-sharp video footage in extreme situations.

Up until now, the thought of capturing steady video footage from a roller coaster would have seemed virtually inconceivable. However, TU Wien and Dynamic Perspective have now succeeded in developing a camera suspension system that can master this challenge with ease.


New camera stabilisation offers top-quality HD-video footage for TV and film even when flying dynamically.

Dynamic Perspective


Innovative mechatronic design and high-performance controll system of the camera gimbal enable high precision in image stability even on small and light aircrafts.

Dynamic Perspective

Featuring five rotational axes and sophisticated control technology, the camera gimbal can compensate for shaking movements with such precision that top-quality film footage can now even be obtained from remote-controlled aircrafts. This opens up brand new perspectives for live sport broadcasts.

Clever not clunky

"The easiest way to overcome shaking problems is to make the camera system as heavy as possible," explains Alexander Schirrer from the Institute of Mechanics and Mechatronics at TU Wien. A heavy camera has so much inertia that minor vibrations have no impact.

However, if the camera has to be mounted on an aircraft, the weight has to be kept to an absolute minimum. Including the camera, the newly developed system weighs just under twenty kilos in total – the kind of load that is perfectly manageable for a small aircraft to carry. Other camera systems can be up to one hundred kilos in weight.

TU Wien and Dynamic Perspective spent two years working on an innovative high-performance control system to enable active camera stabilisation. The result was a special type of cardan suspension called a 'gimbal'. You actually only need three rotational axes to rotate a camera in space in any direction you like. However, two extra axes were added so that particularly fine corrections could be made very quickly.

Thousands of measurements per second

It is not just the mechanical suspension that is crucial; in fact, it is the control system that plays a leading role: sensors measure the position of the camera several thousand times a second and the programmed control algorithms must then calculate exactly the right corrective movements in a matter of several hundred microseconds so that they can be performed subsequently by the electromechanical actuators.

"First of all, we had to carry out extensive computer simulations. Then, we were able to use gyrocopters to test our control technology in practice," says Alexander Schirrer. Their patient research work certainly paid off: "Our set-up still delivers razor-sharp images even when flying dynamically, with full zoom and at full HD resolution. As a result, we are opening up a whole new level of quality, the like of which has never been seen before within this application area."

"Weighing up to 70% less than existing systems, our gimbal is the first that is suitable for use on ultralight aircrafts and drones – alongside conventional applications such as helicopters, cranes, cars and boats," asserts Peter Morawitz from Dynamic Perspective. "Within this context, maximum image stability is assured thanks to our control systems."

A new level of quality for sports footage

When you first hear about the flying camera system, action films might immediately spring to mind, but it is primarily intended for capturing sports footage. In contrast to motion pictures, sports footage does not allow for 3D animation techniques and there is no scope for time-consuming post-editing on a computer. "The footage delivered by the camera must be of top quality from the start and suitable for immediate live broadcast – and that is precisely what our system has made possible," says Schirrer. Another potential application for the new camera system is the recording of precise scientific measurements, e.g. geoinformation.

Weitere Informationen:

Download area
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/wackelfreievideos/

Dr. Florian Aigner | Technische Universität Wien

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>