Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Steady aerial videos


TU Wien and Dynamic Perspective have developed an electronically controlled camera suspension system for capturing razor-sharp video footage in extreme situations.

Up until now, the thought of capturing steady video footage from a roller coaster would have seemed virtually inconceivable. However, TU Wien and Dynamic Perspective have now succeeded in developing a camera suspension system that can master this challenge with ease.

New camera stabilisation offers top-quality HD-video footage for TV and film even when flying dynamically.

Dynamic Perspective

Innovative mechatronic design and high-performance controll system of the camera gimbal enable high precision in image stability even on small and light aircrafts.

Dynamic Perspective

Featuring five rotational axes and sophisticated control technology, the camera gimbal can compensate for shaking movements with such precision that top-quality film footage can now even be obtained from remote-controlled aircrafts. This opens up brand new perspectives for live sport broadcasts.

Clever not clunky

"The easiest way to overcome shaking problems is to make the camera system as heavy as possible," explains Alexander Schirrer from the Institute of Mechanics and Mechatronics at TU Wien. A heavy camera has so much inertia that minor vibrations have no impact.

However, if the camera has to be mounted on an aircraft, the weight has to be kept to an absolute minimum. Including the camera, the newly developed system weighs just under twenty kilos in total – the kind of load that is perfectly manageable for a small aircraft to carry. Other camera systems can be up to one hundred kilos in weight.

TU Wien and Dynamic Perspective spent two years working on an innovative high-performance control system to enable active camera stabilisation. The result was a special type of cardan suspension called a 'gimbal'. You actually only need three rotational axes to rotate a camera in space in any direction you like. However, two extra axes were added so that particularly fine corrections could be made very quickly.

Thousands of measurements per second

It is not just the mechanical suspension that is crucial; in fact, it is the control system that plays a leading role: sensors measure the position of the camera several thousand times a second and the programmed control algorithms must then calculate exactly the right corrective movements in a matter of several hundred microseconds so that they can be performed subsequently by the electromechanical actuators.

"First of all, we had to carry out extensive computer simulations. Then, we were able to use gyrocopters to test our control technology in practice," says Alexander Schirrer. Their patient research work certainly paid off: "Our set-up still delivers razor-sharp images even when flying dynamically, with full zoom and at full HD resolution. As a result, we are opening up a whole new level of quality, the like of which has never been seen before within this application area."

"Weighing up to 70% less than existing systems, our gimbal is the first that is suitable for use on ultralight aircrafts and drones – alongside conventional applications such as helicopters, cranes, cars and boats," asserts Peter Morawitz from Dynamic Perspective. "Within this context, maximum image stability is assured thanks to our control systems."

A new level of quality for sports footage

When you first hear about the flying camera system, action films might immediately spring to mind, but it is primarily intended for capturing sports footage. In contrast to motion pictures, sports footage does not allow for 3D animation techniques and there is no scope for time-consuming post-editing on a computer. "The footage delivered by the camera must be of top quality from the start and suitable for immediate live broadcast – and that is precisely what our system has made possible," says Schirrer. Another potential application for the new camera system is the recording of precise scientific measurements, e.g. geoinformation.

Weitere Informationen:

Download area

Dr. Florian Aigner | Technische Universität Wien

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>