Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steady aerial videos

13.07.2015

TU Wien and Dynamic Perspective have developed an electronically controlled camera suspension system for capturing razor-sharp video footage in extreme situations.

Up until now, the thought of capturing steady video footage from a roller coaster would have seemed virtually inconceivable. However, TU Wien and Dynamic Perspective have now succeeded in developing a camera suspension system that can master this challenge with ease.


New camera stabilisation offers top-quality HD-video footage for TV and film even when flying dynamically.

Dynamic Perspective


Innovative mechatronic design and high-performance controll system of the camera gimbal enable high precision in image stability even on small and light aircrafts.

Dynamic Perspective

Featuring five rotational axes and sophisticated control technology, the camera gimbal can compensate for shaking movements with such precision that top-quality film footage can now even be obtained from remote-controlled aircrafts. This opens up brand new perspectives for live sport broadcasts.

Clever not clunky

"The easiest way to overcome shaking problems is to make the camera system as heavy as possible," explains Alexander Schirrer from the Institute of Mechanics and Mechatronics at TU Wien. A heavy camera has so much inertia that minor vibrations have no impact.

However, if the camera has to be mounted on an aircraft, the weight has to be kept to an absolute minimum. Including the camera, the newly developed system weighs just under twenty kilos in total – the kind of load that is perfectly manageable for a small aircraft to carry. Other camera systems can be up to one hundred kilos in weight.

TU Wien and Dynamic Perspective spent two years working on an innovative high-performance control system to enable active camera stabilisation. The result was a special type of cardan suspension called a 'gimbal'. You actually only need three rotational axes to rotate a camera in space in any direction you like. However, two extra axes were added so that particularly fine corrections could be made very quickly.

Thousands of measurements per second

It is not just the mechanical suspension that is crucial; in fact, it is the control system that plays a leading role: sensors measure the position of the camera several thousand times a second and the programmed control algorithms must then calculate exactly the right corrective movements in a matter of several hundred microseconds so that they can be performed subsequently by the electromechanical actuators.

"First of all, we had to carry out extensive computer simulations. Then, we were able to use gyrocopters to test our control technology in practice," says Alexander Schirrer. Their patient research work certainly paid off: "Our set-up still delivers razor-sharp images even when flying dynamically, with full zoom and at full HD resolution. As a result, we are opening up a whole new level of quality, the like of which has never been seen before within this application area."

"Weighing up to 70% less than existing systems, our gimbal is the first that is suitable for use on ultralight aircrafts and drones – alongside conventional applications such as helicopters, cranes, cars and boats," asserts Peter Morawitz from Dynamic Perspective. "Within this context, maximum image stability is assured thanks to our control systems."

A new level of quality for sports footage

When you first hear about the flying camera system, action films might immediately spring to mind, but it is primarily intended for capturing sports footage. In contrast to motion pictures, sports footage does not allow for 3D animation techniques and there is no scope for time-consuming post-editing on a computer. "The footage delivered by the camera must be of top quality from the start and suitable for immediate live broadcast – and that is precisely what our system has made possible," says Schirrer. Another potential application for the new camera system is the recording of precise scientific measurements, e.g. geoinformation.

Weitere Informationen:

Download area
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/wackelfreievideos/

Dr. Florian Aigner | Technische Universität Wien

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>