Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Steady aerial videos

13.07.2015

TU Wien and Dynamic Perspective have developed an electronically controlled camera suspension system for capturing razor-sharp video footage in extreme situations.

Up until now, the thought of capturing steady video footage from a roller coaster would have seemed virtually inconceivable. However, TU Wien and Dynamic Perspective have now succeeded in developing a camera suspension system that can master this challenge with ease.


New camera stabilisation offers top-quality HD-video footage for TV and film even when flying dynamically.

Dynamic Perspective


Innovative mechatronic design and high-performance controll system of the camera gimbal enable high precision in image stability even on small and light aircrafts.

Dynamic Perspective

Featuring five rotational axes and sophisticated control technology, the camera gimbal can compensate for shaking movements with such precision that top-quality film footage can now even be obtained from remote-controlled aircrafts. This opens up brand new perspectives for live sport broadcasts.

Clever not clunky

"The easiest way to overcome shaking problems is to make the camera system as heavy as possible," explains Alexander Schirrer from the Institute of Mechanics and Mechatronics at TU Wien. A heavy camera has so much inertia that minor vibrations have no impact.

However, if the camera has to be mounted on an aircraft, the weight has to be kept to an absolute minimum. Including the camera, the newly developed system weighs just under twenty kilos in total – the kind of load that is perfectly manageable for a small aircraft to carry. Other camera systems can be up to one hundred kilos in weight.

TU Wien and Dynamic Perspective spent two years working on an innovative high-performance control system to enable active camera stabilisation. The result was a special type of cardan suspension called a 'gimbal'. You actually only need three rotational axes to rotate a camera in space in any direction you like. However, two extra axes were added so that particularly fine corrections could be made very quickly.

Thousands of measurements per second

It is not just the mechanical suspension that is crucial; in fact, it is the control system that plays a leading role: sensors measure the position of the camera several thousand times a second and the programmed control algorithms must then calculate exactly the right corrective movements in a matter of several hundred microseconds so that they can be performed subsequently by the electromechanical actuators.

"First of all, we had to carry out extensive computer simulations. Then, we were able to use gyrocopters to test our control technology in practice," says Alexander Schirrer. Their patient research work certainly paid off: "Our set-up still delivers razor-sharp images even when flying dynamically, with full zoom and at full HD resolution. As a result, we are opening up a whole new level of quality, the like of which has never been seen before within this application area."

"Weighing up to 70% less than existing systems, our gimbal is the first that is suitable for use on ultralight aircrafts and drones – alongside conventional applications such as helicopters, cranes, cars and boats," asserts Peter Morawitz from Dynamic Perspective. "Within this context, maximum image stability is assured thanks to our control systems."

A new level of quality for sports footage

When you first hear about the flying camera system, action films might immediately spring to mind, but it is primarily intended for capturing sports footage. In contrast to motion pictures, sports footage does not allow for 3D animation techniques and there is no scope for time-consuming post-editing on a computer. "The footage delivered by the camera must be of top quality from the start and suitable for immediate live broadcast – and that is precisely what our system has made possible," says Schirrer. Another potential application for the new camera system is the recording of precise scientific measurements, e.g. geoinformation.

Weitere Informationen:

Download area
http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2015/wackelfreievideos/

Dr. Florian Aigner | Technische Universität Wien

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>