Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stable magnetic bit of three atoms

21.09.2017

As reported today in the journal Nature Communications a team of experimentalists and theoreticians of the University of Hamburg in cooperation with the Forschungszentrum Jülich and the Radboud University in Nijmegen have experimentally realized a ferromagnetic particle composed of only three iron atoms which can serve as a bit for the magnetic storage of information. By particular electronic interactions of the bit with the conductive substrate it is positioned on, the information the bit carries can be processed in an unusual, so called non-collinear, way, which could add new functionality to future elements of information technology.

A reoccurring challenge in storage technology is the continuing demand for smaller “bits”, which is the fundamental storage unit. In magnetic memories this information is stored in the magnetization of small magnets. The need to store more and more information in a smaller and smaller area therefore involves the question of how small we can make a magnet which still keeps its magnetization for a prolonged period of time such that the information is not lost.


Illustration of the constructed magnetic bit composed of only three iron atoms on a platinum substrate

Recently, extensive research in this direction has approached the ultimate limit of storing information in individual atoms. A particular challenge for the use of such small storage elements was the destabilization of their magnetization by the interaction with the electrons of the substrate they are positioned on. Consequently, the prevalent approach in order to stabilize the magnetization was to strongly decouple the magnetic bit from the substrate electrons by the use of insulating layers.

However, this route entails the problem that the processing of the information the bit carries for computational purposes, which is done via exactly those substrate electrons, is rather difficult to achieve. To this end, a bit made of a few atoms which are positioned directly on a conductive substrate is highly desirable.

A team of experimentalists and theoreticians of the University of Hamburg in cooperation with the Forschungszentrum Jülich and the Radboud University in Nijmegen have now experimentally realized such a bit. The bit was constructed by using the magnetic tip of a scanning tunneling microscope as a tool for putting together only three iron atoms on a conductive platinum substrate (see the Figure, left panel). They were also able to use the magnetic tip in order to write information into a storage register of two of such bits (see the Figure, right panel) which keeps the stored information for hours.

By using conductive platinum as a substrate, the researchers were able to achieve an intriguing magnetic structure inside the bit and substrate (see the Figure, left panel): the magnetization of the individual constituents of the bit is not aligned parallel, as in conventional magnetic storage elements, but in a much more complex, so called non-collinear, fashion.

This non-collinearity enables to transmit the stored information to neighboring components using a large variety of angles between the magnetizations, other than just 0° and 180°, which will add more flexibility to information processing schemes.

Figure: Left panel: Illustration of the constructed magnetic bit composed of only three iron atoms on a platinum substrate. The arrows indicate the peculiar magnetization inside the bit which carries the information. Right panel: Magnetic images of the four possible states of a register of two of such magnetic bits. In these images, the height of the two bits reflects their state (0, low and 1, high). The iron atom in the back serves as a marker for the height of a tenth of a nanometer.

Original publication:
A gateway towards non-collinear spin processing using three-atom magnets with strong substrate coupling, J. Hermenau, J. Ibañez-Azpiroz, Chr. Hübner, A. Sonntag, B. Baxevanis, K. T. Ton, M. Steinbrecher, A. A. Khajetoorians, M. dos Santos Dias, S. Blügel, R. Wiesendanger, S. Lounis, and J. Wiebe,
Nature Communications (2017).
DIO: 10.1038/s41467-017-00506-7

Weitere Informationen:

http://www.nanoscience.de
http://www.sfb668.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>