Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stability of magnetic bits defined by skyrmions

14.10.2015

Skyrmions are promising candidates for bits of information in novel magnetic data storage devices. They show very intriguing properties and can be of only a few nanometers in size. Scientists of the University of Hamburg have studied the lifetimes of such structures to learn how to tailor them for potential future applications.

One of the cogent necessities in the contemporary world is the storage of a vast amount of digital data. Currently, there are different methods available for that purpose including the use of differently magnetized ferromagnetic cells.


The configurations of a magnetic skyrmion on the left side and of a ferromagnet on the right side. The cones indicate the orientations of the localized atomic magnets. The skyrmion consists of a small number of atoms only and has a diameter of a few nanometers. Researchers of the University of Hamburg studied the spontaneous switching between the two states which may be the bits of information in future data storage devices.

(Image: J. Hagemeister, University of Hamburg)

All atomic magnets are aligned parallel within these cells and can in principle point into two different directions. Thereby, each cell may be in either one of two different states and thus provides the elementary building block of a digital data storage device.

The arrangement of a large number of these cells can be found on a magnetic disc of a conventional hard drive.

In order to be able to meet the demands for data storage devices with even higher capacities in the future, the density of the data storage cells needs to be increased. This process is limited for the current magnetic storage devices, since there is a minimal cell size for stable magnetic bits. Cells become thermally unstable below this critical size and spontaneously change their state resulting in a loss of the stored information.

Therefore, new concepts for storage devices are required and in this context, especially the discovery of magnetic skyrmions in ultrathin metallic films has gained considerable attention in recent years. A skyrmion is a magnetic knot in which the magnetization distribution is twisted.

These skyrmion knots are very stable objects and therefore offer great potential for ultra-dense magnetic data storage. The information would be stored in the skyrmion (“1”) and the ferromagnetic state (“0”).

As the interdisciplinary journal „Nature Communications“ reports on the 14th of October, scientists of the University of Hamburg investigated for the first time the stability of single skyrmions as a function of temperature and a stabilizing external magnetic field.

The lifetime of the skyrmion could be adjusted by a variation of the magnetic field strength. The work has demonstrated that the two states “0” (ferromagnet) and “1” (skyrmion) are very different from each other not only in the magnetic configuration but also in their stability properties.

“Our investigations have shown that skyrmion knots can only be erased with effort from a ferromagnetic surface. This makes them valuable for the application in future data storage devices.” says Dr. Elena Vedmedenko from the research group of Prof. Roland Wiesendanger.

The results will contribute to tailor the lifetimes of magnetic skyrmions in future skyrmion-based memory and logic devices.


Further information:
Heiko Fuchs
Sonderforschungsbereich 668
Universität Hamburg
Jungiusstr. 9A, 20355 Hamburg, Germany
phone.: +49 40 4 28 38 - 69 59
fax: +49 40 4 28 38 - 24 09
e-mail: hfuchs@physnet.uni-hamburg.de

Weitere Informationen:

http://www.sfb668.de
http://www.nanoscience.de

Heiko Fuchs | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>