Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spintronics: Resetting the future of heat assisted magnetic recording

15.06.2016

This paves the way to fast and energy efficient ultrahigh density data storage. The results are published now in the new journal Physical Review Applied.


The nanostructured membrane has a honeycomb pattern with nanoholes of 68 nm in diameter. The nanoholes pin down the magnetic domains.

Credit: HZB

To increase data density further in storage media, materials systems with stable magnetic domains on the nanoscale are needed. For overwriting a specific nanoscopic region with new information, a laser is used to heat locally the bit close to the so called Curie-Temperature, typically several hundred degrees Celsius. Upon cooling, the magnetic domain in this region can be reoriented in a small external magnetic field, known as Heat Assisted Magnetic Recording (HAMR). In industry, Iron-Platinum materials are currently used as magnetic media for the development of such HAMR-data storage devices.

Magnetic signals mapped at BESSY II before and after heating

A HZB team has now examined a new storage media system of Dysprosium and Cobalt, which shows key advantages with respect to conventional HAMR materials: A much lower writing temperature, a higher stability of the magnetic bits, and a versatile control of the spin orientation within individual magnetic bits. They achieved this by sputtering a thin film of Dysprosium and Cobalt onto a nanostructured membrane. The membrane was produced by scientific cooperation partners at the Institute of Materials Science of Madrid. The system shows a honeycomb antidot pattern with distances of 105 nanometers between nanoholes, which are 68 nanometers in diameter. These nanoholes act themselves as pinning centers for stabilizing magnetic wall displacements. The magnetic moments of DyCo5 are perpendicular to the plane and stable against external magnetic fields.

Energy efficient process

HZB-physicist Dr. Jaime Sánchez-Barriga and his team could demonstrate that warming the system to only 80 degrees Celsius is sufficient to tilt the magnetic moments in the DyCo5 film parallel to the surface plane. With measurements at the PEEM and XMCD instruments at BESSY II they could map precisely the magnetic signals before, during and after warming. After cooling to room temperature it is then easy to reorient the magnetic domains with a writing head and to encode new information. "This process in DyCo5 is energy efficient and very fast", states Dr. Florin Radu, co-author of the study. "Our results show that there are alternative candidates for ultrahigh density HAMR storage systems, which need less energy and promise other important advantages as well", adds Sánchez-Barriga.

###

Publication: Ferrimagnetic DyCo5 nanostructures for bits in heat-assisted magnetic recording. A. A. Ünal, S. Valencia, F. Radu, D. Marchenko, K. J. Merazzo, M. Vázquez, and J. Sánchez-Barriga

DOI: http://dx.doi.org/10.1103/PhysRevApplied.5.064007

Media Contact

Jaime Sánchez-Barriga
jaime.sanchez-barriga@helmholtz-berlin.de
49-308-062-15695

 @HZBde

http://www.helmholtz-berlin.de 

Jaime Sánchez-Barriga | EurekAlert!

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>