Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software lets designers exploit the extremely high resolution of 3-D printers

07.08.2017

Designing the microstructure of printed objects

Today's 3-D printers have a resolution of 600 dots per inch, which means that they could pack a billion tiny cubes of different materials into a volume that measures just 1.67 cubic inches.


MIT researchers have developed a new design system that catalogues the physical properties of a huge number of tiny cube clusters. These clusters can then serve as building blocks for larger printable objects.

Image: Computational Fabrication Group at MIT

Such precise control of printed objects' microstructure gives designers commensurate control of the objects' physical properties -- such as their density or strength, or the way they deform when subjected to stresses. But evaluating the physical effects of every possible combination of even just two materials, for an object consisting of tens of billions of cubes, would be prohibitively time consuming.

So researchers at MIT's Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a new design system that catalogues the physical properties of a huge number of tiny cube clusters. These clusters can then serve as building blocks for larger printable objects. The system thus takes advantage of physical measurements at the microscopic scale, while enabling computationally efficient evaluation of macroscopic designs.

"Conventionally, people design 3-D prints manually," says Bo Zhu, a postdoc at CSAIL and first author on the paper. "But when you want to have some higher-level goal -- for example, you want to design a chair with maximum stiffness or design some functional soft [robotic] gripper -- then intuition or experience is maybe not enough. Topology optimization, which is the focus of our paper, incorporates the physics and simulation in the design loop. The problem for current topology optimization is that there is a gap between the hardware capabilities and the software. Our algorithm fills that gap."

Zhu and his MIT colleagues presented their work this week at Siggraph, the premier graphics conference. Joining Zhu on the paper are Wojciech Matusik, an associate professor of electrical engineering and computer science; Mélina Skouras, a postdoc in Matusik's group; and Desai Chen, a graduate student in electrical engineering and computer science.

Points in space

The MIT researchers begin by defining a space of physical properties, in which any given microstructure will assume a particular location. For instance, there are three standard measures of a material's stiffness: One describes its deformation in the direction of an applied force, or how far it can be compressed or stretched; one describes its deformation in directions perpendicular to an applied force, or how much its sides bulge when it's squeezed or contract when it's stretched; and the third measures its response to shear, or a force that causes different layers of the material to shift relative to each other.

Those three measures define a three-dimensional space, and any particular combination of them defines a point in that space.

In the jargon of 3-D printing, the microscopic cubes from which an object is assembled are called voxels, for volumetric pixels; they're the three-dimensional analogue of pixels in a digital image. The building blocks from which Zhu and his colleagues assemble larger printable objects are clusters of voxels.

In their experiments, the researchers considered clusters of three different sizes -- 16, 32, and 64 voxels to a face. For a given set of printable materials, they randomly generate clusters that combine those materials in different ways: a square of material A at the cluster's center, a border of vacant voxels around that square, material B at the corners, or the like. The clusters must be printable, however; it wouldn't be possible to print a cluster that, say, included a cube of vacant voxels with a smaller cube of material floating at its center.

For each new cluster, the researchers evaluate its physical properties using physics simulations, which assign it a particular point in the space of properties.

Gradually, the researchers' algorithm explores the entire space of properties, through both random generation of new clusters and the principled modification of clusters whose properties are known. The end result is a cloud of points that defines the space of printable clusters.

Establishing boundaries

The next step is to calculate a function called the level set, which describes the shape of the point cloud. This enables the researchers' system to mathematically determine whether a cluster with a particular combination of properties is printable or not.

The final step is the optimization of the object to be printed, using software custom-developed by the researchers. That process will result in specifications of material properties for tens or even hundreds of thousands of printable clusters. The researchers' database of evaluated clusters may not contain exact matches for any of those specifications, but it will contain clusters that are extremely good approximations.

###

The MIT researchers' work was supported by the U.S. Defense Advanced Research Projects Agency's SIMPLEX program.

Additional background

PAPER: Two-scale topology optimization with microstructures https://arxiv.org/pdf/1706.03189.pdf

ARCHIVE: Toward printable, sensor-laden "skin" for robots http://news.mit.edu/2017/goldbug-beetle-printable-sensor-laden-skin-robots-0323

ARCHIVE: User-friendly language for programming efficient simulations http://news.mit.edu/2016/user-friendly-language-programming-efficient-simulations-0810

ARCHIVE: Customizing 3-D printing http://news.mit.edu/2015/customizing-3-d-printing-0903

Media Contact

Abby Abazorius
abbya@mit.edu
617-253-2709

 @MIT

http://web.mit.edu/newsoffice 

Abby Abazorius | EurekAlert!

Further reports about: 3-D MIT Software building blocks computer science electrical engineering stiffness

More articles from Information Technology:

nachricht Cheap 3-D printer can produce self-folding materials
25.04.2018 | Carnegie Mellon University

nachricht Quantum Technology for Advanced Imaging – QUILT
24.04.2018 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>