Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smarter use of mobile data

12.06.2017

The data constantly collected and reported by smartphones can find numerous applications. An SNSF-funded project devoted to crowdsensing has found ways to improve privacy and localisation accuracy as well as reduce the impact on hardware.

Connecting data from the world’s smartphones could put a global supercomputer into all of our pockets. Tapping into that processing power would improve the real-time collection and analysis of data, but technical hurdles and privacy concerns linger.

Scientists from SwissSenseSynergy, a project funded by the Swiss National Science Foundation (SNSF), have addressed issues and proposed new ways to collect and use such information.

The main focus of the project is crowdsensing, in which access to a smartphone’s sensors makes it possible to collect information about a particular area. A typical example are map applications which can infer traffic congestion data from the smartphones’ accelerometers.

... more about:
»GPs »SNF »Sensor »Smartphone »mobile data »signals

As our connected devices gather insights about many facets of our environment – motion, sound, people, air quality, etc. – crowdsensing has the potential to guide decisions on where we eat, what we wear or how we travel.

"All of this information is useful in applications ranging from marketing predictions to predicting crowd behaviours," explains Torsten Braun from the University of Bern and coordinator for the project. Nonetheless, crowdsensing applications face significant challenges.

In particular, there is a trade-off between data collection, user impact and privacy. Transmitting data drains hardware resources, for example, while poor security measures pose risks for identity theft.

Four teams developed new approaches to improve crowdsensing technology and establish best practices for its application. Researchers are exploring four key areas: improving location accuracy, increasing security, industry uses, and making data collection more efficient.

Localisation beyond GPS

The team led by Torsten Braun at the University of Bern improved location accuracy indoors and underground to 1.1 metres in 90% of cases. That is comparable to GPS, but relies only on the device's sensor data and radio signals, reaching areas behind walls and concrete where GPS signals are blocked. The researchers collect sensor measurements from the smartphones, alongside the Wifi radio’s signal strength. This information is then passed through several machine learning algorithms. "The next step is to determine where users are going," Braun said. "This could have an impact on shopping centres or train stations, for example."

Scientists from the universities of Bern and Geneva collaborated to design a mobile application combining indoor localisation, mobile crowdsensing and smart spaces. The resulting mobile app integrates sophisticated localisation algorithms and location-stamped sensor measurements, which are pushed to the cloud. From there, the information is fed to the Internet of Things, allowing personalised and location-based automation applications across a number of smart objects and products.

A team at the University of Applied Sciences and Arts of Southern Switzerland in Lugano (SUPSI) has developed models that use predictive location data to distribute information through social media. The experiments showed that they could create rapid outreach on social networks such as Facebook and Twitter, but also in ad hoc physical networks of mobile devices. These messages could respond to local behaviours, assess feedback in real time and circulate more quickly among targeted users. The research provides a deeper understanding of social influence in human behaviour, and discovered correlations between physical locations, shared preferences and event-based social communities.

A balancing act

"A major problem for researchers is balancing data and privacy," explains Braun. "Accurate data can cost privacy." If user information is being swept up while collecting data, it discourages participation. To ensure security, the Chalmers University of Technology team in Sweden has developed machine learning methods for data analysis and automatic decision making that achieve "differential privacy". This protects the data of individuals by injecting carefully calibrated "noise" (random data) into information collected from a device.

Researchers at the University of Geneva addressed another challenge: the desire to collect large amounts of data against the burden that crowdsensing can have on hardware. If users fear a strain on their phone, they might reject applications which make use of otherwise idle sensors. This project is investigating game theory models for distributing such burdens among phones and users. In a field experiment, volunteers in San Francisco downloaded apps to map noise levels in the city, collecting useful data for the local government while testing competing methods for distributing loads among devices.

With its interdisciplinary approach, the SwissSenseSynergy project has yielded new techniques with potential benefits for research and applications. The project is developing a novel experimentation architecture, called Vivo, to involve volunteers in the experimental phase to support application development.

- - - - - - - - - - - - -

The SwissSenseSynergy project

The project gathers four partners: the Institute of Computer Science at the University of Bern, the Department of Computer Science at the University of Geneva, the Institute for Information Systems and Networking at SUPSI and the Department of Computer Science and Engineering at Chalmers University of Technology (Sweden). Swiss Sense Synergy is funded by the Sinergia programme of the SNSF until the end of 2017.

Contact

Prof. Torsten Braun
Institute of Computer Science
University of Bern
CH-3012 Bern
Tel: +41 79 795 9682 (Eastern Standard Time, UTC−5)
E-mail: braun@inf.unibe.ch

- - - - - - - - - - - - - -

C. Dimitrakakis, B. Nelson, Z. Zhang, A. Mitrokotsa, B. I. P. Rubinstein: Differential Privacy for Bayesian Inference through Posterior Sampling. Journal of Machine Learning Research (2017), http://jmlr.org/papers/v18/15-257.html

A. Tossou, C. Dimitrakakis: Achieving Privacy in the adversarial multi-armed bandit. AAAI-2017, https://arxiv.org/abs/1701.04222

J. Carrera, Z. Zhao, T. Braun, A. Neto: A Real-time Indoor Tracking System in Smartphones, (submitted, 2017). http://boris.unibe.ch/99163/ (OA on request)

Z. Zhao, M. Karimzadeh, T. Braun: Next Place Prediction with Hybrid Features using Ensemble Learning, (submitted, 2017). http://boris.unibe.ch/id/eprint/98674 (OA on request)

Z. Zhao, S. Kuendig, J. Carrera, B. Carron, T. Braun, J. Rolim: Indoor Location for Smart Environments with Wireless Sensor and Actuator Networks (2017), https://arxiv.org/abs/1705.09543

K. Garg, S. Giordano, M. Jazayeri: INDIGO: Interest-Driven Data Dissemination Framework For Mobile Networks, (submitted, 2017).

L. Luceri, A. Vancheri, T. Braun, S. Giordano: On the Social Influence in Human Behavior: Location, Homophily, and Social Communities. (submitted, 2017). http://boris.unibe.ch/101024 (OA on request)

J. Buwaya, J. D. P. Rolim: Atomic Routing Mechanisms for Balance of Costs and Quality in Mobile Crowdsensing Systems. IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS) (2017). http://www.swiss-sense-synergy.ch/wp-content/uploads/2017/04/Buwaya_Rolim_DCOSS1...

J. Buwaya, J. D. P. Rolim: Mobile Crowdsensing from a Selfish Routing Perspective. IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPS Workshops) (2017). http://www.swiss-sense-synergy.ch/wp-content/uploads/2017/04/Buwaya_Rolim_IPDPS_...

Weitere Informationen:

http://www.swiss-sense-synergy.ch

Medien - Abteilung Kommunikation | idw - Informationsdienst Wissenschaft

Further reports about: GPs SNF Sensor Smartphone mobile data signals

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>