Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-photon detector can count to 4

18.12.2017

Quantum information scientists teach an old detector a new trick previously believed impossible

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working in quantum information science around the world, while providing easier paths to developing quantum-based technologies.


The image depicts three photons passing through a superconducting nanowire, causing the nanowire to heat up and disrupting the super-current.

Credit: Duke University

The study was a collaboration between Duke University, the Ohio State University and industry partner Quantum Opus, and appeared online on December 14 in the journal Optica.

"Experts in the field were trying to do this more than a decade ago, but their back-of-the-envelope calculations concluded it would be impossible," said Daniel Gauthier, a professor of physics at Ohio State who was formerly the chair of physics at Duke. "They went on to do different things and never revisited it. They had it locked in their mind that it wasn't possible and that it wasn't worth spending time on."

"When we presented our data, world experts were just blown away," continued Jungsang Kim, professor of electrical and computer engineering at Duke. "It's neat having a group like ours that got started a bit later decide to try something because we didn't have any blinders on."

The discovery deals with a new method for using a photon detector called a superconducting nanowire single-photon detector (SNSPD).

At the heart of the detector is a superconducting filament. A superconductor is a special material that can carry an electric current forever with zero losses at low temperatures. But just like a normal piece of copper wire, a superconductor can only carry so much electricity at once.

A SNSPD works by charging a looped segment of superconducting wire with an electric current close to its maximum limit. When a photon passes by, it causes that maximum limit in a small portion of the wire to drop, creating a brief loss of superconductivity. That loss, in turn, causes an electrical signal to mark the presence of the photon.

In the new setup, the researchers pay special attention to the specific shape of the initial spike in the electrical signal, and show that they can get enough detail to correctly count at least four photons traveling together in a packet.

"Photon-number-resolution is very useful for a lot of quantum information/communication and quantum optics experiments, but it's not an easy task," said Clinton Cahall, an electrical engineering doctoral student at Duke and first author of the paper. "None of the commercial options are based on superconductors, which provide the best performance. And while other laboratories have built superconducting detectors with this ability, they're rare and lack the ease of our setup as well as its sensitivity in important areas such as counting speed or timing resolution."

For other labs to make use of the discovery, all they would need is a specific type of amplifier for boosting the SNSPD's tiny electrical signal. The amplifier must work at the same low temperatures as the SNSPD -- minus 452 degrees Fahrenheit -- to reduce background noise. It also must have wide bandwidth to avoid distorting the signal. Such amplifiers are already commercially available and many labs have them.

The results will allow researchers around the world working in quantum mechanics to immediately gain new abilities with their existing equipment. As one example, the Duke-Ohio State group also recently reported how using the timing of incoming photons in addition to their quantum states could greatly increase the speed of quantum encryption techniques.

The team is now working to optimize their setup to see just how far they can stretch its abilities. They believe with the right electronics and a bit of practice, they could count 10 or even 20 photons at a time. The group has also filed for a patent to create off-the-shelf devices based on their method.

###

The research was supported by the Office of Naval Research (N00014-13-1-0627) and the National Aeronautics and Space Administration (NNX13AP35A).

"Multi-Photon Detection using a Conventional Superconducting Nanowire Single-Photon Detector." Clinton Cahall, Kathryn L. Nicolich, Nurul T. Islam, Gregory P. Lafyatis, Aaron J. Miller, Daniel J. Gauthier, and Jungsang Kim. Optica, 2017. DOI: 10.1364/OPTICA.4.001534

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Information Technology:

nachricht Researchers 3-D print electronics and cells directly on skin
26.04.2018 | University of Minnesota

nachricht Cheap 3-D printer can produce self-folding materials
25.04.2018 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>