Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single-photon detector can count to 4

18.12.2017

Quantum information scientists teach an old detector a new trick previously believed impossible

Engineers have shown that a widely used method of detecting single photons can also count the presence of at least four photons at a time. The researchers say this discovery will unlock new capabilities in physics labs working in quantum information science around the world, while providing easier paths to developing quantum-based technologies.


The image depicts three photons passing through a superconducting nanowire, causing the nanowire to heat up and disrupting the super-current.

Credit: Duke University

The study was a collaboration between Duke University, the Ohio State University and industry partner Quantum Opus, and appeared online on December 14 in the journal Optica.

"Experts in the field were trying to do this more than a decade ago, but their back-of-the-envelope calculations concluded it would be impossible," said Daniel Gauthier, a professor of physics at Ohio State who was formerly the chair of physics at Duke. "They went on to do different things and never revisited it. They had it locked in their mind that it wasn't possible and that it wasn't worth spending time on."

"When we presented our data, world experts were just blown away," continued Jungsang Kim, professor of electrical and computer engineering at Duke. "It's neat having a group like ours that got started a bit later decide to try something because we didn't have any blinders on."

The discovery deals with a new method for using a photon detector called a superconducting nanowire single-photon detector (SNSPD).

At the heart of the detector is a superconducting filament. A superconductor is a special material that can carry an electric current forever with zero losses at low temperatures. But just like a normal piece of copper wire, a superconductor can only carry so much electricity at once.

A SNSPD works by charging a looped segment of superconducting wire with an electric current close to its maximum limit. When a photon passes by, it causes that maximum limit in a small portion of the wire to drop, creating a brief loss of superconductivity. That loss, in turn, causes an electrical signal to mark the presence of the photon.

In the new setup, the researchers pay special attention to the specific shape of the initial spike in the electrical signal, and show that they can get enough detail to correctly count at least four photons traveling together in a packet.

"Photon-number-resolution is very useful for a lot of quantum information/communication and quantum optics experiments, but it's not an easy task," said Clinton Cahall, an electrical engineering doctoral student at Duke and first author of the paper. "None of the commercial options are based on superconductors, which provide the best performance. And while other laboratories have built superconducting detectors with this ability, they're rare and lack the ease of our setup as well as its sensitivity in important areas such as counting speed or timing resolution."

For other labs to make use of the discovery, all they would need is a specific type of amplifier for boosting the SNSPD's tiny electrical signal. The amplifier must work at the same low temperatures as the SNSPD -- minus 452 degrees Fahrenheit -- to reduce background noise. It also must have wide bandwidth to avoid distorting the signal. Such amplifiers are already commercially available and many labs have them.

The results will allow researchers around the world working in quantum mechanics to immediately gain new abilities with their existing equipment. As one example, the Duke-Ohio State group also recently reported how using the timing of incoming photons in addition to their quantum states could greatly increase the speed of quantum encryption techniques.

The team is now working to optimize their setup to see just how far they can stretch its abilities. They believe with the right electronics and a bit of practice, they could count 10 or even 20 photons at a time. The group has also filed for a patent to create off-the-shelf devices based on their method.

###

The research was supported by the Office of Naval Research (N00014-13-1-0627) and the National Aeronautics and Space Administration (NNX13AP35A).

"Multi-Photon Detection using a Conventional Superconducting Nanowire Single-Photon Detector." Clinton Cahall, Kathryn L. Nicolich, Nurul T. Islam, Gregory P. Lafyatis, Aaron J. Miller, Daniel J. Gauthier, and Jungsang Kim. Optica, 2017. DOI: 10.1364/OPTICA.4.001534

Media Contact

Ken Kingery
ken.kingery@duke.edu
919-660-8414

 @DukeU

http://www.duke.edu 

Ken Kingery | EurekAlert!

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

Im Focus: Autoimmune Reaction Successfully Halted in Early Stage Islet Autoimmunity

Scientists at Helmholtz Zentrum München have discovered a mechanism that amplifies the autoimmune reaction in an early stage of pancreatic islet autoimmunity prior to the progression to clinical type 1 diabetes. If the researchers blocked the corresponding molecules, the immune system was significantly less active. The study was conducted under the auspices of the German Center for Diabetes Research (DZD) and was published in the journal ‘Science Translational Medicine’.

Type 1 diabetes is the most common metabolic disease in childhood and adolescence. In this disease, the body's own immune system attacks and destroys the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fachtagung analytica conference 2018

15.01.2018 | Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

 
Latest News

New method to map miniature brain circuits

15.01.2018 | Life Sciences

The universe up close

15.01.2018 | Physics and Astronomy

Luminescent lizards - Bone-based fluorescence in chameleons

15.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>