Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Simulation and Virtual Reality: Virtual Trade Fair Tour on the Smartphone

28.04.2015

Picturing digitalization: Rebecca Johnson shows how different Siemens technologies and software programs were cleverly combined to create a 3-D visualization app.

“With this, you can walk through the Siemens Digitalization Forum virtually,” said Rebecca Johnson, pointing to a small cardboard case in which she had just placed her smartphone. The smartphone display is divided into two parts, and when viewed through the two lenses in the case the two images combine to create a 3D impression.


Rebecca Johnson explains Siemens Chief Technology Officer Siegfrid Russwurm the virtual tour.


3-D visualization: On the Hannover fair, Frank Forster (on the right) scans one of the twins, who have worked on the Siemens show.

Johnson, a mobile computing expert at the Siemens global research unit Corporate Technology (CT), created this app for the Hannover Messe, but it can be used to produce a three-dimensional visualization of any environment. Thanks to this innovative app, anyone can literally see digitalization in action.

Originally the idea was to develop a smartphone app to guide people through buildings. “However, there weren’t any maps available for such indoor navigation,” Johnson recounted. “And so I got the idea of using a laser scanner. We simply made our own maps.” Among other things, they produced a three-dimensional map of a Siemens factory hall in Trondheim.

Colleagues at CT have already developed several laser-scanning applications for Siemens, including one that measures the exact dimensions of a chassis or turbine part, for example. To scan a room, a laser scanner is placed at several positions in the room; at each position it takes a 360-degree scan of the surrounding area. However, the raw data produced by the scanner requires extensive processing to make it useful. “We use Siemens PLM (Product Lifecycle Management) software to process these point clouds,” Johnson explained.

Improved 3-D Visualizatzion

The application delivers concrete benefits for Siemens PLM. For example, to facilitate the process of designing or redesigning a production facility, as Siemens customers regularly need to do, the colleagues at CT have developed a handy tool that can immediately show whether the robots in a new production line will truly work together without friction. To demonstrate how quickly the technology can be implemented, a miniature scanner was set up at the trade fair stand.

However, every hour of scan time requires about ten hours of computing time. That is because the point clouds contain numerous duplicate shots, and the models may be distorted by reflections or the presence of people close to the camera.

“All these artifacts need to be computed out,” Johnson explained. “And because that takes so long, we plan to process this data in the cloud in the future.” That should shorten the computing time considerably.

Johnson has managed to reproduce the 3-D models with small enough data quantities that they can fit comfortably in a smartphone’s memory. The result was exhibited at this year’s Hannover Messe and can be downloaded by everyone (see link to the right). Besides taking a virtual tour of the Digitalization Forum after the fair, users can use the app to tour a virtual model of a packaging machine, an exhibit which was shown to German chancellor Angela Merkel. It produced a personalized perfume flask for her.

Norbert Aschenbrenner

www.siemens.com

Dr. Norbert Aschenbrenner | Siemens - Pictures of the Future

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>