Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sensor cable monitors fences of all kinds and can even detect low-level drone fly-bys

25.03.2015

Fenced-in areas, such as airports, nuclear power stations, industrial sites, or private plots of land, can now be monitored thanks to novel sensor technology that has been developed by a team of experimental physicists, led by Professor Uwe Hartmann at Saarland University. The sensors respond immediately as soon as someone tries to climb over or cut through the fence, providing information on the precise location of the security breach. They are even able to detect a low-flying drone passing overhead. The thin cable containing the magnetic field sensors can be easily installed on perimeter fences of all kinds.

The research team is currently working on developing the system so that it can recognize the cause of a disturbance and can automatically identify false alarms triggered by wind or animals. The team is collaborating with industrial partners to produce a cable suitable for mass production. The technology will be shown at HANNOVER MESSE from April 13th to April 17th. The team will be exhibiting at the Saarland Research and Innovation Stand in Hall 2, Stand B 46.


A number of fences on the Saarbrücken campus are presently undergoing long-term monitoring. From left: Professor Uwe Hartmann and the scientists Dr. Uwe Schmitt and Dr. Haibin Gao.

Foto: Oliver Dietze

If someone tries to tamper with a fence, or if they try to climb over it or cut the links with bolt cutters, they will, unavoidably, cause a vibrational disturbance. The movement of the metal fence as it swings back and forth, the motion of the metal cutters or even the trespasser’s belt will all influence the Earth’s magnetic field. These changes are being exploited by a team of experimental physicists at Saarland University for a new type of surveillance technology.

‘Our magnetometers (magnetic field sensors) are highly sensitive and can reliably measure even the smallest of changes in the ambient magnetic field,’ explains Professor Uwe Hartmann. The sensors are even able to detect when a drone flies close by overhead – provided, of course, that the drone contains metal. ‘The sensors can detect disturbances in the surrounding magnetic field, including the magnetic field above them, with a range extending several metres,’ adds research assistant Haibin Gao who is working on the sensor technology as part of Hartmann’s team.

The cable, which contains the linearly arranged sensors, has a diameter comparable to a standard electrical cable and enables the remote monitoring of miles of perimeter fencing. ‘The cable can be attached to the fence, built into it or even buried beneath it. We are currently working with a number of companies to reduce the size of the system and, most importantly, to lower the cost of producing the sensors to a level where large-volume production becomes feasible,’ says Uwe Hartmann.

The contactless sensors are not subject to wear and have a low power consumption. They are unaffected by rain or fog. ‘The sensors function independently of the weather and this gives them a significant advantage over other surveillance techniques, such as cameras, where moisture is often a problem. And the measurements are unproblematic from the point of view of privacy. The sensors simply report that a vibrational disturbance was caused by a human agent at a specific location. No other information is gathered,’ explains Professor Hartmann. A number of different types of sensor systems developed by his research group have already been deployed in traffic management systems, for example in airports.

The miniature sensors in the cable are networked and any change that they register is immediately transmitted to the analyser unit. The location of the disturbance can be specified with high precision, which is of particular value when monitoring very large areas. Scientists in Hartmann’s team are currently working on refining the technology so that the sensors are able to unambiguously assign a particular type of vibration or a particular change in the measured magnetic field to a specific type of disturbance.

‘The aim is to develop a system that can automatically identify false alarms triggered by wind, animals or some other harmless cause,’ explains Hartmann. To do this the researchers are currently simulating different types of disturbances. A number of fences on the Saarbrücken campus are presently undergoing long-term monitoring to determine how the system is affected by such factors as wind. This field data is used by the physicists to model typical disturbance scenarios and to train the system with the aid of complex mathematical methods.

The results are then used to program the sensors and the analyser unit. The new information enables the analyser to automatically attribute a disturbance to a particular cause. If the cause is identified as human, an alarm is triggered; if the disturbance was due to animal rubbing up against the fence, no alarm is set off.

The Federal Ministry of Education and Research (BMBF) has provided a total of more than one million Euro in research funding, of which more than € 250,000 was allocated to Saarland University. Industrial project partners are Sensitec GmbH, based in Mainz and Lahnau (http://www.sensitec.com) and GBA-Panek GmbH whose headquarters are in Kahla, south of Jena (http://www.gba-panek.de).

Contact:
Prof. Dr. Uwe Hartmann, Nanostructure Research and Nanotechnology Group, Department of Experimental Physics, Saarland University, Germany,
Tel.: +49 (0)681 302-3799 or -3798; E-mail: u.hartmann@mx.uni-saarland.de
Dr. Haibin Gao: +49 (0)681 302-3654; h.gao@mx.uni-saarland.de
Dr. Uwe Schmitt: +49 (0)681 302-2957; uwe.schmitt@mx.uni-saarland.de

During HANNOVER MESSE 2015, the Saarland Research and Innovation Stand can be contacted at Tel.: +49 (0)681 302-68500.

Note for radio journalists: Studio-quality telephone interviews can be conducted using broadcast audio IP codec technology (IP direct dial or via the ARD node 106813020001). Interview requests should be addressed to the university’s Press and Public Relations Office (+49 (0)681 302-64091 or -2601).

Background:
The Saarland Research and Innovation Stand is organized by Saarland University's Contact Centre for Technology Transfer (KWT). KWT is the central point of contact for companies interested in exploring opportunities for cooperation and collaboration with researchers at Saarland University. http://www.uni-saarland.de/kwt

Claudia Ehrlich | Universität des Saarlandes

Further reports about: Sensor disturbance drone false alarms magnetic field vibrational disturbance

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>