Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing the forest through the trees with a new LiDAR system

28.06.2017

Researchers from the Naval Research Laboratory use gated digital holography methods to develop foliage penetrating LiDAR that can survey obscured ground

Shortly after lasers were first developed in the 1960s, LiDAR -- whose name originated as a combination of "light" and "radar" -- capitalized on the newly unique precision they offered for measuring both time and distance. LiDAR quickly became the standard method for (3-D) land surveys and is now used in a multitude of sensing applications, such as self-driving cars.


This is a specially designed laser system and a new methodology based on gated digital holography enable LiDAR to see through obscuring elements like foliage and netting.

Credit: US Naval Research Laboratory

By scanning areas of land with lasers, often from airplanes, LiDAR's travel-time measurements for light reflected back from the scanned area provide the distances that make up a resulting high-resolution topography.

As laser and electronic technology evolved, LiDAR's abilities adapted to overcome several limitations and obscuring effects unavoidably produced by real environments, like dynamic weather patterns. With a specially designed laser system and a new methodology based on gated digital holography, research from the Naval Research Laboratory, in Washington, D.C., now provides a method to give LiDAR an enhanced ability to see through otherwise obscuring elements of terrain like foliage or netting. Paul Lebow, from the Naval Research Laboratory, will present this work at The Optical Society's Imaging and Applied Optics Congress, held 26 -29 June, 2017 in San Francisco, California.

"This was an attempt to address one of the problems with something called foliage-penetrating LiDAR," Lebow said. "You can actually use it to detect three-dimensional images behind an obscuration such as a tree canopy, for instance, in a disaster relief situation where you wanted to find people in trouble. You can illuminate using LiDAR through the leaves and get enough light coming back through to be able to recreate a three-dimensional, topographic view of what's going on beneath."

Until now, LiDAR measurements of surfaces hidden behind foliage have been difficult to acquire. A majority of the original light in these cases gets thrown away, as far as the camera detecting light from the ground is concerned, since the light hitting the leaves never reaches the ground in the first place. Moreover, the light blocked, and therefore reflected, before getting to the ground often overpowers the signal hitting the camera and hides the fainter signal that does make it to the ground and back.

"We have been working with a process called optical phase conjugation for quite some time and it dawned on us that we might be able to use that process to essentially project a laser beam through the openings of the leaves and be able to see through a partial obscuration," Lebow said. "It was something that until maybe the last five years was not viable just because the technology wasn't really there. The stuff we had done about 20 years ago involved using a nonlinear optical material and was a difficult process. Now everything can be done using digital holography and computer generated holograms, which is what we do."

This new system uses a specially designed laser that alone took a year and a half to develop, but was a necessary component according to Lebow and his colleague, Abbie Watnik, who is also at the Naval Research Laboratory and another of the work's authors.

"The real key to making our system work is the interference between two laser beams on the sensor. We send one laser beam out to the target and then it returns, and at the exact same time that return [beam] hits the detector, we interfere it locally with another laser beam," Watnik said. "We need complete coherence between those beams such that they interfere with one another, so we had to have a specially designed laser system to ensure that we would get that coherence when they interfere on the camera."

Using a pulsed laser with pulse widths of several nanoseconds, and gated measurements with similar time resolution, the holographic system selectively blocks the earliest-to-arrive light reflecting off obscurations. The camera then only measures light coming back from the partially hidden surface below.

"We've done this earlier using a CW (continuous-wave) laser as a demo, but now we're using a pulsed laser and a very fast gated sensor that can turn on at the appropriate time to basically only let us respond to the light coming from where we want it to come from, from the target," Lebow said. "The laser is designed so that the time difference between the local reference pulse and the signal pulse that comes back from the target is completely adjustable to accommodate distances from a few feet to several kilometers."

"Which means," Watnik said, "we can use this laser system both in our lab on our tabletop setup, as well as outside in the field, using the same laser operating in that range."

This preliminary, laboratory-based system has provided substantial evidence of its power and potential real-world value. Using a perforated index card to pose as (lab-safe) foliage, not only was the group able to image what the holed index card would have otherwise hidden, but their modeling was also able to recreate the topology of the would-be "foliage."

"We were able to verify what our computer model says using our real data - matching it to what we actually see using the spatial light modulator, so I think that was an interesting verification of our results," Watnik said.

Watnik and Lebow, along with their research team, hope to continue with the project and make the adaptations to their prototype necessary to making the foliage-penetrating LiDAR system field-ready.

"That would be our next plan, if we got funding for it," Lebow said. "There have been several other follow-on projects, not specifically for LiDAR, such as beam steering and other digital holographic work that we're doing for imaging through fog and turbid water based on very similar properties and principles."

###

Registration Information

Credentialed media and analysts who wish to cover OSA Imaging and Applied Optics Congress can full-access conference media badge: MediaRelations@osa.org.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts

Rebecca B. Andersen
The Optical Society
1-202.416.1443 randersen@osa.org

Joshua Miller
The Optical Society
1-202.416.1435
jmiller@osa.org

http://www.osa.org 

Joshua Miller | EurekAlert!

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>