Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Secure data transfer thanks to a single photon

13.10.2015

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with the need for high security. Yet there is no doubt that when transferring sensitive data especially, for example from banks or in a political context, security must come first.


Schematic depiction of the single photon source based on a quantum dot microlens.

privat

This high level of security is one of the scientific tasks of the Collaborative Research Center 787 “Semiconductor Nanophotonics”, whose head institution is TU Berlin. Also involved are the mathematicians and MATHEON members Prof. Frank Schmidt, Dr. Sven Burger and Dr. Benjamin Wohlfeil of the Zuse Institute Berlin. A basic model these scientists have developed for absolutely eavesdropping-proof information transfer using single photons even earned a major article in the journal “Nature Communications” (doi:10.1038/ncomms8662).

Data are generally transferred as light pulses through optical fibres. Normal transfer takes place as ones and zeroes, where a “1” is represented by a light pulse comprising billions of photons and a “0” is represented by the absence of light. Transfer in this fashion runs the risk of having, say, 10,000 photons siphoned off from the many billions in order to listen in on the information.

The normal recipient would never even notice. “As the recipient, you cannot distinguish whether all the information has arrived or if a part of it has been tapped,” explains Prof. Stephan Reitzenstein, member of the special research area and professor at the Institute of Physics at TU Berlin.

The aim in quantum communication is therefore to work with single photons. Put simply, this means that anyone trying to listen in has to pull that one single photon out of the transmission, which in turn means the message no longer arrives at the receiver, and the attempt to eavesdrop is clearly noticed.

On top of this, the eavesdropping attempt irreversibly changes the state of the photon so that it cannot be simply reinserted into the data transmission. “Thus they will have disturbed the system in such a way that even copying would be noticed,” Reitzenstein says. Using quantum communication, one could – in theory – make eavesdropping completely impossible, or at least reduce it to a minimum.

There are in fact systems that already work on this basis. In the research project, however, they are working and researching on light sources that are not as yet commercially available. Available systems employ normal lasers with an output power of about one milliwatt. This power is then minimised by attenuators so far that, on average, one photon comes out of the system. The problem, however, is that for many pulses, this all-important strong attenuation causes either no photon to be emitted or more than one photon to be emitted per pulse. The possibility of failure of the current systems is thus relatively high, and so these systems are still very slow and relatively unreliable.

In the real world, this means there is still no way commercially to incite individual light sources to reliably emit exactly one single photon at each push of a button. “You can imagine this process as kind of like using a gun, where one photon is shot out at a time. This is exactly where the research project is focused,” Stephan Reitzenstein declares.

According to the physicist’s knowledge, while these processes are being studied worldwide, the great progress made by the Berlin researchers is unique. Also unique is the special lithography method employed in the Berlin approach. They are working with quantum dots on a tiny semiconducting object spanning 10–20 nanometres. If this quantum dot is excited “at the push of a button”, then an electron is stored, with a so-called hole as a counterpart.

After a certain time, these two oppositely charged particles recombine and emit a photon. During production, however, such quantum dots form randomly on the surface of the semiconductor material. So, one never knows with certainty where exactly the quantum dot is located in the active layer of the sample. This leads to an arbitrarily poor yield in general. In the special research area, they are therefore developing a model that helps locate the quantum dots, so they can then embed them targetedly into a microlens as a single photon source.

This is where Frank Schmidt, Sven Burger and Benjamin Wohlfeil come in. The mathematicians calculated, and are still calculating, the optical part of the quantum physics. “We were given a light source and a configuration as a starting point. We then had to clarify what the optimum shape, size and depth of the lens, that is the final optical component, should be. Ultimately, it’s all about optimising the lens, so it’s a classical problem of optimisation,” says Prof. Schmidt. Another problem for the mathematicians was to guarantee the current flow through the appropriate substrate and then to calculate how much light will ultimately come out of the lens.

This is no trivial task, since metals also absorb light. “These are all prerequisites to solve if we are to make a manufacturable and marketable design out of the physical effect,” Benjamin Wohlfeil adds. They accordingly experimented with many different lens shapes. It took powerful computers and a great deal of mathematics to bring these calculations into manageable form. In the end, the mathematicians were greatly successful, having managed to increase the emitted light in their models from about one percent to more than 60 percent.

The microlens thus developed hardly differs from a normal lens, except that the lens is now used in the reverse sense. The “focal spot” is the single photon source so that the lens efficiently emits this photon into the environment – in this case the communication channel. Without such a lens, only about one in every hundred photons would make it out.

Meanwhile, during the lens production process, all other disturbing quantum dots are removed to ensure only the one, effective quantum dot resides in the lens. This requires an elaborate in-situ lithography method developed over the past three years in Prof. Reitzenstein’s group. The Berlin method thereby offers full control to produce the optimum lens with integrated quantum dot. The quantum dot and lens are made of the same, identical material. So far, this is unique in the world. The yield from this method is namely about 90 percent, unlike usuall methods described worldwide, which achieve typically a yield of only around one percent.

The process is, of course, not yet mature enough to be incorporated into finished devices. The main hindrance is that it takes extremely low temperatures of less than −240 degrees Celsius for it to work. Solving the cooling problem is one important goal. Another task will be to modify the emission wavelength of 900 nanometres to the 1300 nanometres typically used in telecommunications, and then couple the source directly to a glass fibre. Once these challenges are overcome, there should be nothing standing in the way of the first single photon source “Made in Berlin”.

Finally, there is still the problem of the too short range of this quantum data transfer, since this type of communication in principle does not allow signal amplification. In all conventional fibre optic cables, the data are repeatedly amplified every few tens of kilometres in order to achieve the greatest possible range. In quantum communication, however, they will have to rely on teleportation, which still has its place more in science fiction films than anywhere else. Again, the MATHEON mathematicians are needed here just as much as for speeding up the transfer.

Prof. Reitzenstein does not expect this task will be fulfilled within the next four years and thus by the end of the special research area’s term, which is limited to a maximum of twelve years. “This last mentioned problem could be the task of a new Collaboratice Research Center. Yet we are facing major competition in this, above all from China, where sums in the two- to three-digit millions are currently being invested in this research,” the physicist admits.

Weitere Informationen:

http://www.matheon.de
http://www.zib.de/frank.schmidt
http://www.ifkp.tu-berlin.de/menue/arbeitsgruppen/ag_reitzenstein/ueber_uns/

Rudolf Kellermann | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>