Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving lots of computing capacity with a new algorithm

29.10.2014

The control of modern infrastructure such as intelligent power grids needs lots of computing capacity. Scientists of the Interdisciplinary Centre for Security, Reliability and Trust (SnT) at the University of Luxembourg have developed an algorithm that might revolutionise these processes.

With their new software the SnT researchers are able to forego the use of considerable amounts of computing capacity, enabling what they call micro mining. Their achievements, which the team headed by Prof. Yves Le Traon published in the International Conference on Software Engineering and Knowledge Engineering, earned the scientists a Best Paper Award during this event.

Modern infrastructure – from the telephone network and alarm systems to power supply systems – is controlled by computer programmes. This intelligent software continuously monitors the state of the equipment, adjusts system parameters if they deviate, or generates error messages. To monitor the equipment, the software compares its current state with its past state by continuously measuring the status quo, accumulating this data, and analysing it.

That uses a considerable portion of available computing capacity. Thanks to their new algorithm, the SnT researchers’ software no longer has to continuously analyse the state of the system to be monitored the way established techniques do. In carrying out the analysis of the system, it instead seamlessly moves between state values that were measured at different points in time.

“In particular the operation of distributed installations such as power grids of today will benefit from our programme”, says Dr. François Fouquet, managing the project at SnT with Dr. Jacques Klein: “In these smart grids, as they are referred to, many smaller individual components like solar cells, rectifiers, and other components must be monitored and controlled. For the investment and operating costs to remain economically acceptable, they have to be equipped with small, simple control units.” These kinds of small embedded microprocessors cannot continuously measure the system states, store the data, and evaluate it in real-time.

Thomas Hartmann, who is completing his doctoral dissertation as part of the project, explains the new approach by SnT: “Our software stores only the changes of the system state at specific points in time. In order to be able to correctly evaluate the current situation in the network, our algorithm automatically identifies suitable measure-ment values from the past. It therefore pulls the correct measurement values from the archive to carry out a correct analysis of the current state – thereby essentially jumping back and forth in time. That translates into an enormous reduction in computing overhead and thus an increase in computing efficiency for the same standard of security and dependability.”

The researchers next want to field test their process. As in the first part of the project, they are collaborating with Creos, the Luxembourg power grid operator and participant in the SnT Partnership Program “Thanks to this collaboration, our research has always remained in accord with corporate realities", says Prof. Yves Le Traon: “We are hoping our fundamental development work will trigger a jump in the technology of smart grids.”

About SnT: Launched in 2009 by the University of Luxembourg, SnT is an internationally recognised leading research institute that together with external partners establishes Luxembourg as a European centre of excellence and innovation for secure, reliable, and trustworthy information and communications technologies (ICT). In order to create a great impact, SnT follows an interdisciplinary research approach, taking not only technical aspects into account but also addressing business, human, and regulatory issues. SnT provides a valuable platform for interaction and collaboration between university researchers and external partners.

Weitere Informationen:

http://www.uni.lu/snt - Website of SnT at the University of Luxembourg

Sophie Kolb | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>