Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Saving lots of computing capacity with a new algorithm

29.10.2014

The control of modern infrastructure such as intelligent power grids needs lots of computing capacity. Scientists of the Interdisciplinary Centre for Security, Reliability and Trust (SnT) at the University of Luxembourg have developed an algorithm that might revolutionise these processes.

With their new software the SnT researchers are able to forego the use of considerable amounts of computing capacity, enabling what they call micro mining. Their achievements, which the team headed by Prof. Yves Le Traon published in the International Conference on Software Engineering and Knowledge Engineering, earned the scientists a Best Paper Award during this event.

Modern infrastructure – from the telephone network and alarm systems to power supply systems – is controlled by computer programmes. This intelligent software continuously monitors the state of the equipment, adjusts system parameters if they deviate, or generates error messages. To monitor the equipment, the software compares its current state with its past state by continuously measuring the status quo, accumulating this data, and analysing it.

That uses a considerable portion of available computing capacity. Thanks to their new algorithm, the SnT researchers’ software no longer has to continuously analyse the state of the system to be monitored the way established techniques do. In carrying out the analysis of the system, it instead seamlessly moves between state values that were measured at different points in time.

“In particular the operation of distributed installations such as power grids of today will benefit from our programme”, says Dr. François Fouquet, managing the project at SnT with Dr. Jacques Klein: “In these smart grids, as they are referred to, many smaller individual components like solar cells, rectifiers, and other components must be monitored and controlled. For the investment and operating costs to remain economically acceptable, they have to be equipped with small, simple control units.” These kinds of small embedded microprocessors cannot continuously measure the system states, store the data, and evaluate it in real-time.

Thomas Hartmann, who is completing his doctoral dissertation as part of the project, explains the new approach by SnT: “Our software stores only the changes of the system state at specific points in time. In order to be able to correctly evaluate the current situation in the network, our algorithm automatically identifies suitable measure-ment values from the past. It therefore pulls the correct measurement values from the archive to carry out a correct analysis of the current state – thereby essentially jumping back and forth in time. That translates into an enormous reduction in computing overhead and thus an increase in computing efficiency for the same standard of security and dependability.”

The researchers next want to field test their process. As in the first part of the project, they are collaborating with Creos, the Luxembourg power grid operator and participant in the SnT Partnership Program “Thanks to this collaboration, our research has always remained in accord with corporate realities", says Prof. Yves Le Traon: “We are hoping our fundamental development work will trigger a jump in the technology of smart grids.”

About SnT: Launched in 2009 by the University of Luxembourg, SnT is an internationally recognised leading research institute that together with external partners establishes Luxembourg as a European centre of excellence and innovation for secure, reliable, and trustworthy information and communications technologies (ICT). In order to create a great impact, SnT follows an interdisciplinary research approach, taking not only technical aspects into account but also addressing business, human, and regulatory issues. SnT provides a valuable platform for interaction and collaboration between university researchers and external partners.

Weitere Informationen:

http://www.uni.lu/snt - Website of SnT at the University of Luxembourg

Sophie Kolb | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>