Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SASER-Siegfried – Record-breaking Transmission Field Trial

24.06.2015

Celtic-Plus project SASER-Siegfried has performed a record-breaking transmission field trial of 38.4 Tbps over the 762 kilometer fiber optic link Lyon-Marseille-Lyon.

For the first time, several tens of terabits per second (i.e. 38.4 Tbps) have been transported over a 762 kilometers Lyon-Marseille-Lyon fiber optic link in the Orange optical transport network, thanks to 1 Tbps and beyond super-channels.

This multi-terabit field trial, which took place over the Orange legacy fiber infrastructure in May, constitutes a world-record transmission not only in terms of aggregated capacity (38.4 Tbps) but also in terms of transmission reach (762 km).

This record-breaking field trial was conducted using the latest advances in ultra-high-capacity optical communications technologies. For Orange, the objective was to demonstrate that its legacy fiber infrastructure is able to transport such multi-terabit capacity. For Coriant, Ekinops, Keopsys, and Socionext, the aim was to validate the compliance of their most advanced optical transport solutions with the real operational constraints of a “live” optical transport network.

In this record-breaking field trial, advanced technology engineers from Orange, Coriant, Ekinops, Keopsys, and Socionext successfully demonstrated the highest ever C-band transmission capacity using 24 x 1 Tbps/DP-16QAM (i.e. 24 Tbps), 32 x 1 Tbps/DP-32QAM (i.e. 32 Tbps), and 32 x 1.2 Tbps/DP-64QAM (i.e. 38.4 Tbps) modulation formats in a “live” networking environment.

The companies also achieved a record-setting transmission reach of 762 kilometers in the same live environment, more than twice the distance of any previous field records for 32QAM, and the first ever regional transmission for 64QAM. These achievements represent an important milestone in the research and development of highly scalable, spectrally-efficient optical networking technologies optimized for future network growth.

The 1 Tbps and beyond super-channels (implemented by Coriant) used the most advanced optical transmission technologies and capabilities, including spectrally-efficient modulation formats for optical communications (8 bits/s/Hz achieved with 64QAM), powerful forward error correction codes, and the most sophisticated digital signal processing algorithms to compensate for hardware and transmission impairments. The transmitters and receivers were based on the newest generation of ultra high-speed digital-to-analog and analog-to-digital converters (developed by Socionext Network Business Unit) using 92 GSa/s high-bandwidth coherent receivers.

The hybrid Raman/Erbium-doped optical amplifiers (provided by Ekinops and Keopsys) have been developed to be low-cost and energy-efficient. They implement only two pumps at two different wavelengths, and are equipped with all the safety mechanisms required by the field.

The flatness of the hybrid amplifier is obtained thanks to an optimization of the joint working of the Raman and Erbium-doped gain blocks. The record distance achieved in this field trial (i.e. 762 km) is due not only to the transceiver quality but also to the high-level of performance of the hybrid optical amplifiers developed here, which have been systematically used on each of the amplification spans.

The field infrastructure provided by Orange is constituted of high-quality G.652 single-mode fibers with loss-reduced connections between the equipment (terminals, amplifiers) and the cable heads, and as such is able to support distributed Raman amplification and to transport 1 Tbps and beyond super-channels.

This field trial was performed within the framework of the European Celtic-Plus SASER (SAfe and Secure European Routing) project funded jointly by the BMBF (Bundesministerium für Bildung und Forschung) and DGE (Direction Générale des Entreprises), and supported also by the IDEALIST project (Industry-Driven Elastic and Adaptive Lambda Infrastructure for Service and Transport Networks).

Weitere Informationen:

https://www.celticplus.eu/saser-siegfried-record-breaking-transmission-field-tri...

Milon Gupta | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>