Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot eyes will benefit from insect vision

11.06.2015

The way insects see and track their prey is being applied to a new robot under development at the University of Adelaide, in the hopes of improving robot visual systems.

The project - which crosses the boundaries of neuroscience, mechanical engineering and computer science - builds on years of research into insect vision at the University.


University of Adelaide Ph.D. student Zahra Bagheri and supervisor Professor Benjamin Cazzolato (School of Mechanical Engineering) with the robot under development. The robot features a vision system using algorithms based on insect vision.

Credit: The University of Adelaide

In a new paper published today in the Journal of The Royal Society Interface, researchers describe how the learnings from both insects and humans can be applied in a model virtual reality simulation, enabling an artificial intelligence system to 'pursue' an object.

"Detecting and tracking small objects against complex backgrounds is a highly challenging task," says the lead author of the paper, Mechanical Engineering PhD student Zahra Bagheri.

"Consider a cricket or baseball player trying to take a match-winning catch in the outfield. They have seconds or less to spot the ball, track it and predict its path as it comes down against the brightly coloured backdrop of excited fans in the crowd - all while running or even diving towards the point where they predict it will fall!

"Robotics engineers still dream of providing robots with the combination of sharp eyes, quick reflexes and flexible muscles that allow a budding champion to master this skill," she says.

Research conducted in the lab of University of Adelaide neuroscientist Dr Steven Wiederman (School of Medical Sciences) has shown that flying insects, such as dragonflies, show remarkable visually guided behaviour. This includes chasing mates or prey, even in the presence of distractions, like swarms of insects.

"They perform this task despite their low visual acuity and a tiny brain, around the size of a grain of rice. The dragonfly chases prey at speeds up to 60 km/h, capturing them with a success rate over 97%," Ms Bagheri says.

The team of engineers and neuroscientists has developed an unusual algorithm to help emulate this visual tracking. "Instead of just trying to keep the target perfectly centred on its field of view, our system locks on to the background and lets the target move against it," Ms Bagheri says. "This reduces distractions from the background and gives time for underlying brain-like motion processing to work. It then makes small movements of its gaze and rotates towards the target to keep the target roughly frontal."

This bio-inspired "active vision" system has been tested in virtual reality worlds composed of various natural scenes. The Adelaide team has found that it performs just as robustly as the state-of-the-art engineering target tracking algorithms, while running up to 20 times faster.

"This type of performance can allow for real-time applications using quite simple processors," says Dr Wiederman, who is leading the project, and who developed the original motion sensing mechanism after recording the responses of neurons in the dragonfly brain.

"We are currently transferring the algorithm to a hardware platform, a bio-inspired, autonomous robot."

###

Media Contacts:

Zahra Bagheri
PhD student
School of Mechanical Engineering
The University of Adelaide
zahra.bagheri@adelaide.edu.au

Dr Steven Wiederman
ARC Discovery Early Career Researcher
School of Medical Sciences
The University of Adelaide
Phone: +61 8 8313 8067
steven.wiederman@adelaide.edu.au

Dr. Steven Wiederman | EurekAlert!

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Researchers devise microreactor to study formation of methane hydrate

23.08.2017 | Materials Sciences

ShAPEing the future of magnesium car parts

23.08.2017 | Automotive Engineering

New insights into the world of trypanosomes

23.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>