Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers prototype system for reading closed books

09.09.2016

New computational imaging method identifies letters printed on first 9 pages of a stack of paper

MIT researchers and their colleagues are designing an imaging system that can read closed books.


MIT researchers and their colleagues are designing an imaging system that can read closed books.

Courtesy of Barmak Heshmat

In the latest issue of Nature Communications, the researchers describe a prototype of the system, which they tested on a stack of papers, each with one letter printed on it. The system was able to correctly identify the letters on the top nine sheets.

"The Metropolitan Museum in New York showed a lot of interest in this, because they want to, for example, look into some antique books that they don't even want to touch," says Barmak Heshmat, a research scientist at the MIT Media Lab and corresponding author on the new paper. He adds that the system could be used to analyze any materials organized in thin layers, such as coatings on machine parts or pharmaceuticals.

Heshmat is joined on the paper by Ramesh Raskar, the NEC Career Development Associate Professor of Media Arts and Sciences; Albert Redo Sanchez, a research specialist in the Camera Culture group at the Media Lab; two of the group's other members; and by Justin Romberg and Alireza Aghasi of Georgia Tech.

The MIT researchers developed the algorithms that acquire images from individual sheets in stacks of paper, and the Georgia Tech researchers developed the algorithm that interprets the often distorted or incomplete images as individual letters. "It's actually kind of scary," Heshmat says of the letter-interpretation algorithm. "A lot of websites have these letter certifications [captchas] to make sure you're not a robot, and this algorithm can get through a lot of them."

The system uses terahertz radiation, the band of electromagnetic radiation between microwaves and infrared light, which has several advantages over other types of waves that can penetrate surfaces, such as X-rays or sound waves. Terahertz radiation has been widely researched for use in security screening, because different chemicals absorb different frequencies of terahertz radiation to different degrees, yielding a distinctive frequency signature for each. By the same token, terahertz frequency profiles can distinguish between ink and blank paper, in a way that X-rays can't.

Terahertz radiation can also be emitted in such short bursts that the distance it has traveled can be gauged from the difference between its emission time and the time at which reflected radiation returns to a sensor. That gives it much better depth resolution than ultrasound.

The system exploits the fact that trapped between the pages of a book are tiny air pockets only about 20 micrometers deep. The difference in refractive index -- the degree to which they bend light -- between the air and the paper means that the boundary between the two will reflect terahertz radiation back to a detector.

In the researchers' setup, a standard terahertz camera emits ultrashort bursts of radiation, and the camera's built-in sensor detects their reflections. From the reflections' time of arrival, the MIT researchers' algorithm can gauge the distance to the individual pages of the book.

While most of the radiation is either absorbed or reflected by the book, some of it bounces around between pages before returning to the sensor, producing a spurious signal. The sensor's electronics also produce a background hum. One of the tasks of the MIT researchers' algorithm is to filter out all this "noise."

The information about the pages' distance helps: It allows the algorithm to hone in on just the terahertz signals whose arrival times suggest that they are true reflections. Then, it relies on two different measures of the reflections' energy and assumptions about both the energy profiles of true reflections and the statistics of noise to extract information about the chemical properties of the reflecting surfaces.

At the moment, the algorithm can correctly deduce the distance from the camera to the top 20 pages in a stack, but past a depth of nine pages, the energy of the reflected signal is so low that the differences between frequency signatures are swamped by noise. Terahertz imaging is still a relatively young technology, however, and researchers are constantly working to improve both the accuracy of detectors and the power of the radiation sources, so deeper penetration should be possible.

Media Contact

Abby Abazorius
abbya@mit.edu
617-253-2709

 @MIT

http://web.mit.edu/newsoffice 

Abby Abazorius | EurekAlert!

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>