Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers prototype system for reading closed books

09.09.2016

New computational imaging method identifies letters printed on first 9 pages of a stack of paper

MIT researchers and their colleagues are designing an imaging system that can read closed books.


MIT researchers and their colleagues are designing an imaging system that can read closed books.

Courtesy of Barmak Heshmat

In the latest issue of Nature Communications, the researchers describe a prototype of the system, which they tested on a stack of papers, each with one letter printed on it. The system was able to correctly identify the letters on the top nine sheets.

"The Metropolitan Museum in New York showed a lot of interest in this, because they want to, for example, look into some antique books that they don't even want to touch," says Barmak Heshmat, a research scientist at the MIT Media Lab and corresponding author on the new paper. He adds that the system could be used to analyze any materials organized in thin layers, such as coatings on machine parts or pharmaceuticals.

Heshmat is joined on the paper by Ramesh Raskar, the NEC Career Development Associate Professor of Media Arts and Sciences; Albert Redo Sanchez, a research specialist in the Camera Culture group at the Media Lab; two of the group's other members; and by Justin Romberg and Alireza Aghasi of Georgia Tech.

The MIT researchers developed the algorithms that acquire images from individual sheets in stacks of paper, and the Georgia Tech researchers developed the algorithm that interprets the often distorted or incomplete images as individual letters. "It's actually kind of scary," Heshmat says of the letter-interpretation algorithm. "A lot of websites have these letter certifications [captchas] to make sure you're not a robot, and this algorithm can get through a lot of them."

The system uses terahertz radiation, the band of electromagnetic radiation between microwaves and infrared light, which has several advantages over other types of waves that can penetrate surfaces, such as X-rays or sound waves. Terahertz radiation has been widely researched for use in security screening, because different chemicals absorb different frequencies of terahertz radiation to different degrees, yielding a distinctive frequency signature for each. By the same token, terahertz frequency profiles can distinguish between ink and blank paper, in a way that X-rays can't.

Terahertz radiation can also be emitted in such short bursts that the distance it has traveled can be gauged from the difference between its emission time and the time at which reflected radiation returns to a sensor. That gives it much better depth resolution than ultrasound.

The system exploits the fact that trapped between the pages of a book are tiny air pockets only about 20 micrometers deep. The difference in refractive index -- the degree to which they bend light -- between the air and the paper means that the boundary between the two will reflect terahertz radiation back to a detector.

In the researchers' setup, a standard terahertz camera emits ultrashort bursts of radiation, and the camera's built-in sensor detects their reflections. From the reflections' time of arrival, the MIT researchers' algorithm can gauge the distance to the individual pages of the book.

While most of the radiation is either absorbed or reflected by the book, some of it bounces around between pages before returning to the sensor, producing a spurious signal. The sensor's electronics also produce a background hum. One of the tasks of the MIT researchers' algorithm is to filter out all this "noise."

The information about the pages' distance helps: It allows the algorithm to hone in on just the terahertz signals whose arrival times suggest that they are true reflections. Then, it relies on two different measures of the reflections' energy and assumptions about both the energy profiles of true reflections and the statistics of noise to extract information about the chemical properties of the reflecting surfaces.

At the moment, the algorithm can correctly deduce the distance from the camera to the top 20 pages in a stack, but past a depth of nine pages, the energy of the reflected signal is so low that the differences between frequency signatures are swamped by noise. Terahertz imaging is still a relatively young technology, however, and researchers are constantly working to improve both the accuracy of detectors and the power of the radiation sources, so deeper penetration should be possible.

Media Contact

Abby Abazorius
abbya@mit.edu
617-253-2709

 @MIT

http://web.mit.edu/newsoffice 

Abby Abazorius | EurekAlert!

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>