Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers catch extreme waves with higher-resolution modeling

15.02.2017

Berkeley Lab study shows that finer-detailed data captures effects of tropical cyclones

Surfers aren't the only people trying to catch big waves. Scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) are trying to do so, too, at least in wave climate forecasts.


Hurricanes are seen generating big waves within the high-resolution, 25-km model (right side). The large waves show up as bright, yellow and red spots. These storms and resulting waves are almost entirely absent in the low-resolution, 100-km model (left).

Credit: Ben Timmermans and Michael Wehner/Berkeley Lab

Using decades of global climate data generated at a spatial resolution of about 25 kilometers squared, researchers were able to capture the formation of tropical cyclones, also referred to as hurricanes and typhoons, and the extreme waves that they generate. Those same models, when run at resolutions of about 100 kilometers, missed the tropical cyclones and the big waves up to 30 meters high.

Their findings, published in the Feb. 16 issue of Geophysical Research Letters, demonstrate the importance of running climate models at higher resolution. Better predictions of how often extreme waves will hit are important for coastal cities, the military, and industries that rely upon shipping and offshore oil platforms. And, of course, for surfers.

"It's well known that to study tropical cyclones using simulations, the models need to be run at high resolution," said study lead author and postdoctoral fellow Ben Timmermans. "The majority of existing models used to study the global climate are run at resolutions that are insufficient to predict tropical cyclones. The simulations in our study are the first long-duration global data sets to use a resolution of 25 kilometers. It's also the first time a study has specifically examined the impact of resolution increase for ocean waves at a global climatological scale."

The other authors on this study are Dáith? Stone, Michael Wehner, and Harinarayan Krishnan. All authors are scientists in Berkeley Lab's Computational Research Division (CRD).

Zooming in to detect hurricanes

Climate models work by simulating the exchange of air, water, and energy between the grid "boxes." In today's state-of-the-art climate models, these boxes are typically 100 to 200 kilometers wide. That level of detail is good enough to catch the formation and movement of midlatitude storms, the researchers said, because such systems tend to be quite large.

In contrast, tropical cyclones tend to cover a smaller area. While the overall footprint of a hurricane can be broad, the eye of a hurricane can be very compact and well defined, the researchers noted.

"The problem with that 100-kilometer resolution is that it misses key details of the hurricanes and tropical cyclones, which are clearly relevant to the generation of extreme waves," said Stone. "But going to a 25-kilometer resolution data set is computationally challenging. It requires 64 times more computational resources than a 100-kilometer simulation."

The study relied upon the data-crunching power of the National Energy Research Scientific Computing Center (NERSC), a scientific computing user facility funded by the DOE Office of Science and based at Berkeley Lab.

The researchers ran the Community Atmosphere Model version 5 (CAM5) climate model with data collected in three-hour increments at a low resolution of 100 kilometers and at a high resolution of 25?kilometers. They found that the high-resolution simulations included tropical cyclones where the low-resolution ones did not.

Crunching data to catch big waves

To see if the cyclones had an effect on waves, they then ran global wave models at both resolutions. They saw extreme waves in the high-resolution model that did not appear in the low-resolution ones.

"Hurricanes are tricky things to model," said Stone. "We've shown the importance of using a high-resolution data set for producing hurricanes. But the characteristics of hurricanes could change with the climate. People are making projections of changes in ocean waves in a future, warmer world. It's not clear if the 25-kilometer resolution is sufficient for capturing all of the processes involved in the development of a hurricane. But we do know that it's better than 100 kilometers."

While additional high-resolution simulations of the future are on the way, the researchers were able to take a first look at possible conditions at the end of the 21st century. Wehner noted that the biggest waves in Hawaii are projected to be substantially larger in a much warmer future world.

The researchers added that this study only looked at averages of wind-generated waves. One-off "rogue" or "freak" waves cannot be reproduced in these kinds of models, and large waves such as tsunamis are very different since they are caused by seismological activity, not the wind.

The data from this study will be made freely available for use by the wider scientific community.

"In the same way that weather patterns are part of the climate, ocean wave patterns are also part of the 'wave' climate," said Timmermans. "Ocean waves are relevant to the interaction between the ocean and the atmosphere, which affects the planet's climate as a whole."

###

This work was supported by DOE's Office of Science.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact

Sarah Yang
scyang@lbl.gov
510-486-4575

 @BerkeleyLab

http://www.lbl.gov 

Sarah Yang | EurekAlert!

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>