Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers achieve HD video streaming at 10,000 times lower power

20.04.2018

Wearable cameras such as Snap Spectacles promise to share videos of live concerts or surgeries instantaneously with the world. But because these cameras must use smaller batteries to stay lightweight and functional, these devices can't perform high-definition video streaming.

Now, engineers at the University of Washington have developed a new HD video streaming method that doesn't need to be plugged in. Their prototype skips the power-hungry parts and has something else, like a smartphone, process the video instead.


The UW team's low-power prototype can stream 720p HD videos at 10 frames per second to a device, like a laptop, up to 14 feet away.

Credit: Dennis Wise/University of Washington

They do this using a technique called backscatter, through which a device can share information by reflecting signals that have been transmitted to it.

"The fundamental assumption people have made so far is that backscatter can be used only for low-data rate sensors such as temperature sensors," said co-author Shyam Gollakota, an associate professor in the UW's Paul G. Allen School of Computer Science & Engineering. "This work breaks that assumption and shows that backscatter can indeed support even full HD video."

The team presented these findings April 10 at the Advanced Computing Systems Association's Symposium on Networked Systems Design and Implementation.

In today's streaming cameras, the camera first processes and compresses the video before it is transmitted via Wi-Fi. These processing and communication components eat a lot of power, especially with HD videos. As a result, a lightweight streaming camera that doesn't need large batteries or a power source has been out of reach.

The UW team developed a new system that eliminates all of these components. Instead, the pixels in the camera are directly connected to the antenna, and it sends intensity values via backscatter to a nearby smartphone. The phone, which doesn't have the same size and weight restrictions as a small streaming camera, can process the video instead.

For the video transmission, the system translates the pixel information from each frame into a series of pulses where the width of each pulse represents a pixel value. The time duration of the pulse is proportional to the brightness of the pixel.

"It's sort of similar to how the cells in the brain communicate with each other," said co-author Joshua Smith, a professor in the Allen School and the UW Department of Electrical Engineering. "Neurons are either signaling or they're not, so the information is encoded in the timing of their action potentials."

The team tested their idea using a prototype that converted HD YouTube videos into raw pixel data. Then they fed the pixels into their backscatter system. Their design could stream 720p HD videos at 10 frames per second to a device up to 14 feet away.

"That's like a camera recording a scene and sending the video to a device in the next room," said co-author and computer science and engineering doctoral student Mehrdad Hessar.

The group's system uses 1,000 to 10,000 times less power than current streaming technology. But it still has a small battery that supports continuous operation. The next step is to make wireless video cameras that are completely battery-free, said Smith, who is the Milton and Delia Zeutschel Professor for Entrepreneurial Excellence.

The team has also created a low-resolution, low-power security camera, which can stream at 13 frames per second. This falls in line with the range of functions the group predicts for this technology.

"There are many applications," said co-author and recent UW electrical engineering alum Saman Naderiparizi. "Right now home security cameras have to be plugged in all the time. But with our technology, we can effectively cut the cord for wireless streaming cameras."

The group also envisions a world where these cameras are smart enough to only turn on when they are needed for their specific purpose, which could save even more energy.

Gollakota is excited the UW research team is at the forefront of the low-power video-streaming field and its impact on the industry.

"This video technology has the potential to transform the industry as we know it. Cameras are critical for a number of internet-connected applications, but so far they have been constrained by their power consumption," he said.

"Just imagine you go to a football game five years from now," Smith added. "There could be tiny HD cameras everywhere recording the action: stuck on players' helmets, everywhere across the stadium. And you don't have to ever worry about changing their batteries."

###

This technology has been licensed to Jeeva Wireless, a Seattle-based startup founded by a team of UW researchers, including Gollakota, Smith and Vamsi Talla, a recent UW alum and co-author on this paper.

This research was funded by the National Science Foundation, the Alfred P. Sloan Foundation and Google Faculty Research Awards.

For more information, contact the research team at batteryfreevideo@cs.washington.edu.

Photos available: https://drive.google.com/drive/folders/1BggmzWlWixsoNOQl-MQl1t3SvMcr6ylq?usp=sharing

Video available: https://www.youtube.com/watch?v=0H9MHixUVko&feature=youtu.be

Paper: https://homes.cs.washington.edu/~gshyam/Papers/videobackscatter.pdf

Release posted online at: http://www.washington.edu/news/2018/04/19/researchers-achieve-hd-video-streaming-at-10000-times-lower-power/

Media Contact

Sarah McQuate
smcquate@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Sarah McQuate | EurekAlert!

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>