Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Touching' new internet research at Queen's University Belfast

A future where online shoppers can feel the products they want to buy and where people playing interactive games can immediately feel the force of an impact is getting closer, thanks to research being carried out at Queen’s University.

Researchers at the Belfast-based university are currently undertaking a new technology study which has the potential to add the sense of touch to virtual worlds.

In addition to opening up a whole array of new opportunities for industries such as electronic gaming, the new technology also promises to permit blind and visually impaired people to access the internet in a way they cannot currently.

At present, major online networks can only carry information relating to two senses, aural and visual. Now, Professor Alan Marshall and his colleagues in the School of Electronics, Electrical Engineering and Computer Science at Queen’s are to spend the next three years working on new network architectures to support the addition of other senses, particularly that of ‘touch’.

Known as haptic technology, such systems interface the user via the sense of touch by applying forces, vibrations and/or motions to the user. This mechanical stimulation is used to create haptic virtual objects in a haptic virtual environment.

At present, almost all haptic devices are only capable of being connected to a single stand-alone system. Professor Marshall and his partners, including BT (UK), Immersion (USA) and HandshakeVR (Canada), hope to develop networks to increase the user’s immersion in a virtual environment by allowing them not only to see but also to touch the environment around them. It is hoped users will also be able to share these sensations with fellow users in numerous locations. The study will also aim to overcome the challenge of maintaining a consistent view of the shared information in the face of inevitable network delays and variable bandwidth.

Queen’s University already has a world first in the area of haptic technology, having performed the first long distance tele-haptic coloration over the internet in conjunction with British Telecom’s research lab in Ipswich in 2003.

Speaking about his hopes for the new study, Professor Marshall, who is principal investigator of the project, said: “If we are to enter the ‘second age’ of the internet, then it must be able to support multimodal communication, including additional senses. Queen’s University is a forerunner in the global race to introduce the necessary new architectures and networks capable of carrying such information.

“We are already leading a new project entitled ENABLED concerning the delivery of web content to blind and visually impaired and the potential applications made possible by the architectures coming out of this new study will be huge.

“Take the Nintendo Wii as an example. It has already revolutionised gaming without players having the ability to receive any touch-related feedback. Imagine what it would be like if we could select to play a virtual character based on Roger Federer and feel every impact of his serve, in real time.”

Lisa Mitchell | alfa
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>