Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnets see the light

18.02.2002


Light-tunable magnets would work only in the coolest computers.
© Getty Images


Light-sensitive ’plastic’ magnets could replace your hard drive.

A ’plastic’ magnet that responds to light could lead to new ways of storing and reading large amounts of computer data. Light would be used to store information in cheap, fast and high-capacity ’magneto-optic’ memories.

The light-switchable magnet is the first to be made from organic (carbon-based) molecules. This means its discoverers, Arthur Epstein of Ohio State University in Columbus and Joel Miller of the University of Utah in Salt Lake City, should be able to use clever chemical tricks to fine-tune the properties of the material1.



Their first goal is to raise the temperature at which the magnetic switching operates. At present, the material works only when cooled to below -198 oC.

Although this sounds impractically low, it is within spitting distance of the temperature at which nitrogen liquefies:
-196 oC. A relatively cheap refrigerant, liquid nitrogen could quite feasibly be used to cool commercial devices incorporating a modified light-sensitive magnet, Epstein and colleagues hope.

Magnetic memories store information in tiny ’magnetized domains’, where magnetic field lines points either ’up’ or ’down’. This allows magnetic media to store the binary (zeros and ones) data of the digital world. In conventional magnetic memories, the direction of the magnetic field is switched electronically; magneto-optic systems do the switching with light, usually from lasers.

There is nothing new about magneto-optic memories. Some commercial hard-disk drives already exist that use light to read and write information stored in magnetic films. But in these systems the laser switches the magnetic medium by warming it.

Epstein and colleagues’ material contains manganese atoms mixed with small organic molecules, and becomes more magnetic when it absorbs blue light. The light alters the shape of the organic molecules, changing their magnetic properties. The researchers can reverse the effect either by shining green light on the material or by heating it above
-23oC.

In a future memory device, information could be encoded in the material as regions of ’stronger’ or ’weaker’ magnetism, which could be written and erased using tightly focused lasers. This could lead to information storage at very high densities.

Epstein admits that applications of this effect are still a long way off - the organic magnet needs a lot of improvement before it has the properties demanded of commercial devices.

References

  1. Pejakovic, D. A., Kitamura, C., Miller, J. S. & Epstein, A. J. Photoinduced magnetization in the organic-based magnet Mn(TCNE)x.y(CH2Cl2). Physical Review Letters, 88, 057202, (2002).

PHILIP BALL | © Nature News Service

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>