Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evacuation no option for Randstad flood

07.12.2006
A flood in the southern Randstad (Netherlands) will claim thousands of victims. And evacuating the area would only save precious few lives, TU Delft researcher Bas Jonkman states in the latest edition of Delft Outlook (Delft Integraal).

If the seawalls at The Hague and Ter Heijde are breached and the fast-flowing seawater floods the polder land behind the dikes, there will be more than 4,000 casualties, according to a new calculation method devised by TU Delft PhD candidate Bas Jonkman.

Jonkman's method also reveals that evacuating this area would only save at most 600 lives. "It's possible to predict a North Sea storm a day or two in advance," Jonkman says. 'But before an evacuation could begin, the government would deliberate and everyone would have to be warned. Then, people would pack up their belongings. All this would cost a lot of time."

However, in the less densely populated polder lands along the rivers, if people were warned well enough in advance of an impending flood, Jonkman's model predicts that an evacuation would indeed save many lives. For the densely populated polders bordering the coastline, Jonkman says it would be more effective for example to build stronger and higher dikes, as this would reduce the likelihood of a flood.

Until now, various rules of thumb have been used to estimate the number of possible casualties resulting from a flood. Jonkman's model for estimating casualties is more precise. It consists of various parts, including a model that simulates an evacuation and thereby determines how many people would still be in the area if the dike were breached. Determining how many of these people would survive is dependent on how fast the water flows, how fast the water rises and how deep the water is. To make such predictions, Jonkman uses a model that was developed by TU Delft and the research institute WL Delft Hydraulics. Jonkman combined the models to simulate the evacuation and the course of the flood.

The majority of Jonkman's doctoral research was devoted to devising the so-called 'victim functions'. 'If the water is four meters deep, then 20 percent of the people in that area would not survive', is an example of how this function works. For the victim functions, Jonkman based his data on the calamitous flood in the Netherlands in 1953 and other such disasters. To determine if his model's findings were realistic, Jonkman also processed data from the floods caused by Hurricane Katrina in August 2005, when the dikes protecting New Orleans were breached. Jonkman's model calculated 2,000 victims for that disaster – a figure that Jonkman is pleased with: "This is of the same order of magnitude as the 1,100 bodies that have actually been recovered so far."

An in-depth article about this research subject has been published in the latest edition of Delft Integraal / Delft Outlook, the independent science magazine of TU Delft. (www.delftintegraal.tudelft.nl –Dutch-).

Roy Meijer | alfa
Further information:
http://www.delftintegraal.tudelft.nl

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>