Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computers spread the risk

04.12.2001


Quantum computing has borrowed ideas from finance.
© Corbis


A balanced portfolio of programs could mean a faster quantum computer.

Strategies from the world of finance could help get the best out of quantum computers, say US researchers1. The right portfolio of programs could solve a problem many times faster than a single strategem.

Quantum computers - purely hypothetical as yet - would be fast, but you could never be sure whether a program was going to work or not. You would have to keep running the program until it gave you an answer.



Program portfolios could optimize this process, say Sebastian Maurer of Stanford University in California and colleagues.

The challenge is to run the program often enough to have a good chance of getting an answer, but not so often that you end up wastefully repeating successful runs. The number of runs is usually selected in advance, and needs to be chosen carefully.

This, says Maurer’s team, is like designing a portfolio of many different investments, which minimizes risks at the cost of providing only a modest return. The researchers tried to tailor a portfolio of programs that had a good chance of finding a solution in a specified time and a low risk of failing to find a solution.

Speculate to accumulate

In quantum computing, the chance of finding the answer does not simply increase as the program is rerun: it rises and falls rhythmically. One possible portfolio involves using the same program repeatedly but varying the number of times it is run.

Maurer and his colleagues tested their portfolio on a so-called NP-complete mathematical problem. Normal computers struggle to solve these, because they generally have to search through every single possible answer to find the best one. As chess-playing programs show, a small number of parameters can produce an astronomical number of answers.

Solving NP-complete problems is one of the most attractive potential uses of quantum computers. By storing and processing information as quantum states of atoms - ’quantum bits’ or qubits - rather than zeros and ones, a quantum computer could perform a vast number of operations at once. No one has yet built a quantum computer, because it is extremely hard to control more than a handful of quantum states simultaneously.

The researchers used conventional computers to calculate how quantum computers would cope with very simple cases. They found that a well-chosen portfolio of programs typically solved some NP-complete problems at least twice as fast as a single program. In some cases the portfolio is more than ten times faster, and the team says that further improvements are possible.

References

  1. Maurer, S. M., Hogg, T. & Huberman, B. A.Portfolios of quantum algorithms. Physical Review Letters, 87, 257901, (2001).


PHILIP BALL | © Nature News Service

More articles from Information Technology:

nachricht Ahead of the Curve
27.06.2017 | Institute of Science and Technology Austria

nachricht Switchable DNA mini-machines store information
26.06.2017 | Emory Health Sciences

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>