Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Quantum computers spread the risk


Quantum computing has borrowed ideas from finance.
© Corbis

A balanced portfolio of programs could mean a faster quantum computer.

Strategies from the world of finance could help get the best out of quantum computers, say US researchers1. The right portfolio of programs could solve a problem many times faster than a single strategem.

Quantum computers - purely hypothetical as yet - would be fast, but you could never be sure whether a program was going to work or not. You would have to keep running the program until it gave you an answer.

Program portfolios could optimize this process, say Sebastian Maurer of Stanford University in California and colleagues.

The challenge is to run the program often enough to have a good chance of getting an answer, but not so often that you end up wastefully repeating successful runs. The number of runs is usually selected in advance, and needs to be chosen carefully.

This, says Maurer’s team, is like designing a portfolio of many different investments, which minimizes risks at the cost of providing only a modest return. The researchers tried to tailor a portfolio of programs that had a good chance of finding a solution in a specified time and a low risk of failing to find a solution.

Speculate to accumulate

In quantum computing, the chance of finding the answer does not simply increase as the program is rerun: it rises and falls rhythmically. One possible portfolio involves using the same program repeatedly but varying the number of times it is run.

Maurer and his colleagues tested their portfolio on a so-called NP-complete mathematical problem. Normal computers struggle to solve these, because they generally have to search through every single possible answer to find the best one. As chess-playing programs show, a small number of parameters can produce an astronomical number of answers.

Solving NP-complete problems is one of the most attractive potential uses of quantum computers. By storing and processing information as quantum states of atoms - ’quantum bits’ or qubits - rather than zeros and ones, a quantum computer could perform a vast number of operations at once. No one has yet built a quantum computer, because it is extremely hard to control more than a handful of quantum states simultaneously.

The researchers used conventional computers to calculate how quantum computers would cope with very simple cases. They found that a well-chosen portfolio of programs typically solved some NP-complete problems at least twice as fast as a single program. In some cases the portfolio is more than ten times faster, and the team says that further improvements are possible.


  1. Maurer, S. M., Hogg, T. & Huberman, B. A.Portfolios of quantum algorithms. Physical Review Letters, 87, 257901, (2001).

PHILIP BALL | © Nature News Service

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>