Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flip chips are altering the face of electronic packaging

11.11.2002


Technical Insights’ Sensor Technology Alert

Flip chip packaging delivers enhanced electrical performance, saves space, and provides high conduction speed, making it an ideal technology for use in handheld devices and medical electronics, among other applications.

"As integrated circuit fabrication advances rapidly and the market for faster, smaller, yet less expensive electronic products accelerates, flip chip packaging comes into play," says Technical Insights Research Analyst Anand Subramanian.



In this method, the active side of the silicon chip faces down and is directly connected to the substrate or printed wire board. This allows a much higher input/output count than in conventional packaging, since the whole area under the chip can be used for interconnection. Moreover, the reverse side of the chip can be used for heat dissipation. Increased signal propagation speed owing to reduced inductance is yet another advantage.

"Flip chips offer the possibility of low cost electronic assembly for modern electronic products because interconnection on the chip can be made simultaneously in a single step," says Subramanian.

One of the most important parts of the chip manufacturing process is the detection of flawed chips. Generally, the chips are closely examined by infrared laser imaging with 1064 nm excitation. In the "face down" mounting of flip chips, inspection techniques are more complicated since only the back of the chip is discernible.

Physicists at the Ultrafast Optics Group of Heriot-Watt University, Edinburgh, and at Schlumberger Test and Transactions, San Jose, seem to have found a different, more accurate method of detecting defective chips.

Using the two-photon optical beam induced current (TOBIC) effect, they have been able to get 3D profiles of integrated circuit components on a silicon flip chip, with resolutions of 1 micrometer or better in all three dimensions. A mode-locked femtosecond optical parametric oscillator at 1.275 micrometers provided two-photon excitation of the chip.

Two-photon fluorescence imaging has typically and successfully been used in biological microscopy, where it has had a significant impact. This technique now stands poised to revolutionize chip work as well.

The Ultrafast Optics Group has successfully demonstrated 2D two-photon imaging in semiconductor devices. The technique employed by his laboratory involves using a high peak-power infrared laser operating at a wavelength longer than the one-photon. This technique seems particularly useful for optical probing of silicon flip chips, such as those used in high-speed microprocessors.

A thinned silicon substrate was largely instrumental in achieving focal discrimination in TOBIC imaging. Having discovered this, the physicists decided to produce a depth profile of the features across a component on the chip. By recording images at 20 different focal positions across a range of 9 micrometers, they were able to build a map of the peak photocurrent focal depth across the component.

With suitable processing of the TOBIC data, the ability to detect and image the interfaces between epilayers in light-emitting diode structures, or within vertical-cavity surface-emitting lasers, looks a distinct possibility.

Analysis by Technical Insights, a business unit of Frost & Sullivan (www.Technical-Insights.frost.com), featured in its Sensor Technology subscription, highlights the impact of flip chips in electronic packaging.


Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of breakthrough sensor technologies is covered in Sensor Technology Alert, a Technical Insights subscription service, and in Sensor Sourcebook, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Interviews are available to the press.

Sensor Technology Alert

Contact:
USA:
Julia Rowell
P: 210-247-3870
F: 210-348-1003
E: jrowell@frost.com

APAC:
Pramila Gurtoo
DID : 603-6204-5811
Gen : 603-6204-5800
Fax : 603-6201-7402
E: pgurtoo@frost.com

Julia Rowell | EurekAlert!
Further information:
http://www.frost.com
http://www.Technical-Insights.frost.com

More articles from Information Technology:

nachricht Snake-inspired robot uses kirigami to move
22.02.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Camera technology in vehicles: Low-latency image data compression
22.02.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>