Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flip chips are altering the face of electronic packaging

11.11.2002


Technical Insights’ Sensor Technology Alert

Flip chip packaging delivers enhanced electrical performance, saves space, and provides high conduction speed, making it an ideal technology for use in handheld devices and medical electronics, among other applications.

"As integrated circuit fabrication advances rapidly and the market for faster, smaller, yet less expensive electronic products accelerates, flip chip packaging comes into play," says Technical Insights Research Analyst Anand Subramanian.



In this method, the active side of the silicon chip faces down and is directly connected to the substrate or printed wire board. This allows a much higher input/output count than in conventional packaging, since the whole area under the chip can be used for interconnection. Moreover, the reverse side of the chip can be used for heat dissipation. Increased signal propagation speed owing to reduced inductance is yet another advantage.

"Flip chips offer the possibility of low cost electronic assembly for modern electronic products because interconnection on the chip can be made simultaneously in a single step," says Subramanian.

One of the most important parts of the chip manufacturing process is the detection of flawed chips. Generally, the chips are closely examined by infrared laser imaging with 1064 nm excitation. In the "face down" mounting of flip chips, inspection techniques are more complicated since only the back of the chip is discernible.

Physicists at the Ultrafast Optics Group of Heriot-Watt University, Edinburgh, and at Schlumberger Test and Transactions, San Jose, seem to have found a different, more accurate method of detecting defective chips.

Using the two-photon optical beam induced current (TOBIC) effect, they have been able to get 3D profiles of integrated circuit components on a silicon flip chip, with resolutions of 1 micrometer or better in all three dimensions. A mode-locked femtosecond optical parametric oscillator at 1.275 micrometers provided two-photon excitation of the chip.

Two-photon fluorescence imaging has typically and successfully been used in biological microscopy, where it has had a significant impact. This technique now stands poised to revolutionize chip work as well.

The Ultrafast Optics Group has successfully demonstrated 2D two-photon imaging in semiconductor devices. The technique employed by his laboratory involves using a high peak-power infrared laser operating at a wavelength longer than the one-photon. This technique seems particularly useful for optical probing of silicon flip chips, such as those used in high-speed microprocessors.

A thinned silicon substrate was largely instrumental in achieving focal discrimination in TOBIC imaging. Having discovered this, the physicists decided to produce a depth profile of the features across a component on the chip. By recording images at 20 different focal positions across a range of 9 micrometers, they were able to build a map of the peak photocurrent focal depth across the component.

With suitable processing of the TOBIC data, the ability to detect and image the interfaces between epilayers in light-emitting diode structures, or within vertical-cavity surface-emitting lasers, looks a distinct possibility.

Analysis by Technical Insights, a business unit of Frost & Sullivan (www.Technical-Insights.frost.com), featured in its Sensor Technology subscription, highlights the impact of flip chips in electronic packaging.


Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of breakthrough sensor technologies is covered in Sensor Technology Alert, a Technical Insights subscription service, and in Sensor Sourcebook, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Interviews are available to the press.

Sensor Technology Alert

Contact:
USA:
Julia Rowell
P: 210-247-3870
F: 210-348-1003
E: jrowell@frost.com

APAC:
Pramila Gurtoo
DID : 603-6204-5811
Gen : 603-6204-5800
Fax : 603-6201-7402
E: pgurtoo@frost.com

Julia Rowell | EurekAlert!
Further information:
http://www.frost.com
http://www.Technical-Insights.frost.com

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>