Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Flip chips are altering the face of electronic packaging


Technical Insights’ Sensor Technology Alert

Flip chip packaging delivers enhanced electrical performance, saves space, and provides high conduction speed, making it an ideal technology for use in handheld devices and medical electronics, among other applications.

"As integrated circuit fabrication advances rapidly and the market for faster, smaller, yet less expensive electronic products accelerates, flip chip packaging comes into play," says Technical Insights Research Analyst Anand Subramanian.

In this method, the active side of the silicon chip faces down and is directly connected to the substrate or printed wire board. This allows a much higher input/output count than in conventional packaging, since the whole area under the chip can be used for interconnection. Moreover, the reverse side of the chip can be used for heat dissipation. Increased signal propagation speed owing to reduced inductance is yet another advantage.

"Flip chips offer the possibility of low cost electronic assembly for modern electronic products because interconnection on the chip can be made simultaneously in a single step," says Subramanian.

One of the most important parts of the chip manufacturing process is the detection of flawed chips. Generally, the chips are closely examined by infrared laser imaging with 1064 nm excitation. In the "face down" mounting of flip chips, inspection techniques are more complicated since only the back of the chip is discernible.

Physicists at the Ultrafast Optics Group of Heriot-Watt University, Edinburgh, and at Schlumberger Test and Transactions, San Jose, seem to have found a different, more accurate method of detecting defective chips.

Using the two-photon optical beam induced current (TOBIC) effect, they have been able to get 3D profiles of integrated circuit components on a silicon flip chip, with resolutions of 1 micrometer or better in all three dimensions. A mode-locked femtosecond optical parametric oscillator at 1.275 micrometers provided two-photon excitation of the chip.

Two-photon fluorescence imaging has typically and successfully been used in biological microscopy, where it has had a significant impact. This technique now stands poised to revolutionize chip work as well.

The Ultrafast Optics Group has successfully demonstrated 2D two-photon imaging in semiconductor devices. The technique employed by his laboratory involves using a high peak-power infrared laser operating at a wavelength longer than the one-photon. This technique seems particularly useful for optical probing of silicon flip chips, such as those used in high-speed microprocessors.

A thinned silicon substrate was largely instrumental in achieving focal discrimination in TOBIC imaging. Having discovered this, the physicists decided to produce a depth profile of the features across a component on the chip. By recording images at 20 different focal positions across a range of 9 micrometers, they were able to build a map of the peak photocurrent focal depth across the component.

With suitable processing of the TOBIC data, the ability to detect and image the interfaces between epilayers in light-emitting diode structures, or within vertical-cavity surface-emitting lasers, looks a distinct possibility.

Analysis by Technical Insights, a business unit of Frost & Sullivan (, featured in its Sensor Technology subscription, highlights the impact of flip chips in electronic packaging.

Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of breakthrough sensor technologies is covered in Sensor Technology Alert, a Technical Insights subscription service, and in Sensor Sourcebook, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Interviews are available to the press.

Sensor Technology Alert

Julia Rowell
P: 210-247-3870
F: 210-348-1003

Pramila Gurtoo
DID : 603-6204-5811
Gen : 603-6204-5800
Fax : 603-6201-7402

Julia Rowell | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>