Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flip chips are altering the face of electronic packaging

11.11.2002


Technical Insights’ Sensor Technology Alert

Flip chip packaging delivers enhanced electrical performance, saves space, and provides high conduction speed, making it an ideal technology for use in handheld devices and medical electronics, among other applications.

"As integrated circuit fabrication advances rapidly and the market for faster, smaller, yet less expensive electronic products accelerates, flip chip packaging comes into play," says Technical Insights Research Analyst Anand Subramanian.



In this method, the active side of the silicon chip faces down and is directly connected to the substrate or printed wire board. This allows a much higher input/output count than in conventional packaging, since the whole area under the chip can be used for interconnection. Moreover, the reverse side of the chip can be used for heat dissipation. Increased signal propagation speed owing to reduced inductance is yet another advantage.

"Flip chips offer the possibility of low cost electronic assembly for modern electronic products because interconnection on the chip can be made simultaneously in a single step," says Subramanian.

One of the most important parts of the chip manufacturing process is the detection of flawed chips. Generally, the chips are closely examined by infrared laser imaging with 1064 nm excitation. In the "face down" mounting of flip chips, inspection techniques are more complicated since only the back of the chip is discernible.

Physicists at the Ultrafast Optics Group of Heriot-Watt University, Edinburgh, and at Schlumberger Test and Transactions, San Jose, seem to have found a different, more accurate method of detecting defective chips.

Using the two-photon optical beam induced current (TOBIC) effect, they have been able to get 3D profiles of integrated circuit components on a silicon flip chip, with resolutions of 1 micrometer or better in all three dimensions. A mode-locked femtosecond optical parametric oscillator at 1.275 micrometers provided two-photon excitation of the chip.

Two-photon fluorescence imaging has typically and successfully been used in biological microscopy, where it has had a significant impact. This technique now stands poised to revolutionize chip work as well.

The Ultrafast Optics Group has successfully demonstrated 2D two-photon imaging in semiconductor devices. The technique employed by his laboratory involves using a high peak-power infrared laser operating at a wavelength longer than the one-photon. This technique seems particularly useful for optical probing of silicon flip chips, such as those used in high-speed microprocessors.

A thinned silicon substrate was largely instrumental in achieving focal discrimination in TOBIC imaging. Having discovered this, the physicists decided to produce a depth profile of the features across a component on the chip. By recording images at 20 different focal positions across a range of 9 micrometers, they were able to build a map of the peak photocurrent focal depth across the component.

With suitable processing of the TOBIC data, the ability to detect and image the interfaces between epilayers in light-emitting diode structures, or within vertical-cavity surface-emitting lasers, looks a distinct possibility.

Analysis by Technical Insights, a business unit of Frost & Sullivan (www.Technical-Insights.frost.com), featured in its Sensor Technology subscription, highlights the impact of flip chips in electronic packaging.


Frost & Sullivan is a global leader in strategic growth consulting. Acquired by Frost & Sullivan, Technical Insights is an international technology analysis business that produces a variety of technical news alerts, newsletters, and reports. This ongoing growth opportunity analysis of breakthrough sensor technologies is covered in Sensor Technology Alert, a Technical Insights subscription service, and in Sensor Sourcebook, a Frost & Sullivan Technical Insights technology report. Technical Insights and Frost & Sullivan also offer custom growth consulting to a variety of national and international companies. Interviews are available to the press.

Sensor Technology Alert

Contact:
USA:
Julia Rowell
P: 210-247-3870
F: 210-348-1003
E: jrowell@frost.com

APAC:
Pramila Gurtoo
DID : 603-6204-5811
Gen : 603-6204-5800
Fax : 603-6201-7402
E: pgurtoo@frost.com

Julia Rowell | EurekAlert!
Further information:
http://www.frost.com
http://www.Technical-Insights.frost.com

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>