Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The art of walking through walls made real

08.10.2002


Academy of Finland showed the way at Science Exhibition
The art of walking through walls made real


Walking through walls has just become possible. Senior researcher Ismo Rakkolainen and Professor Karri Palovuori from Tampere University of Technology have pioneered a fog display that is physically penetrable. A prototype of the screen was introduced to the public for the first time at the Academy of Finland stand at the Turku Science Exhibition on 4-6 October 2002. International patents are now pending on the innovation.


There are endless potential applications for the fog display. Among the examples mentioned by the researchers are the projection of images in art exhibitions as well as in advertising and gaming applications and in theme parks. The technology allows for the creation of extremely large surfaces and entices the audience into experimenting.

The key lies in the laminar airflow

The fog display consists of a laminar, non-turbulent airflow into which a thin fog screen is injected by means of separate nozzles. Together, the fog screen and the protective laminar airflow create a thin and crisp surface. A vacuum system can be used to remove humidity, and to ensure non-turbulence or to improve non-turbulence, but this is not necessary. Both film or still images can be projected onto the fog display, creating for instance swiftly flowing rapids or a brick wall. This means you can indeed walk straight through the wall, without breaking sweat. As well as fully penetrable, the fog display is non-poisonous, non-breakable and extremely light weight.

Early versions out of drinking straws and banana boxes

‘I knew about a few other fog screen methods, but they were all highly unreliable. I began to apply myself to the question of how we could create a better and more reliable mechanism. I talked about this with Karri Palovuori, and we soon produced the basic parameters for our idea,’ Ismo Rakkolainen says. Both Palovuori and Ismo Rakkolainen work at the Tampere University of Technology Signal Processing Laboratory.

Initially Ismo Rakkolainen wanted to keep his blueprint for the screen close to his chest, so he began working on the idea in his own living room. At this stage funding for the innovation was not yet forthcoming, so the very first versions were created using banana boxes and 2000 drinking straws. His wife, not surprisingly, had some doubts as to how serious a scientific exercise this was.

The prototype on display at the Academy’s stand in Turku is a more advanced version, standing almost 1.5 metres high. Mika Piirto from Tampere University of Technology has spent much of the summer working to further improve the mechanism, under the supervision of project director Ismo Rakkolainen.

An even more advanced model of the screen will be on show next year at Museum Centre Vapriikki and at the Communications museum in Tampere.

Heli Häivälä | alfa
Further information:
http://www.aka.fi/modules/intinfo/showinfo.cfm?infoid=3865

More articles from Information Technology:

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

nachricht Ahead of the Curve
27.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>