Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The art of walking through walls made real

08.10.2002


Academy of Finland showed the way at Science Exhibition
The art of walking through walls made real


Walking through walls has just become possible. Senior researcher Ismo Rakkolainen and Professor Karri Palovuori from Tampere University of Technology have pioneered a fog display that is physically penetrable. A prototype of the screen was introduced to the public for the first time at the Academy of Finland stand at the Turku Science Exhibition on 4-6 October 2002. International patents are now pending on the innovation.


There are endless potential applications for the fog display. Among the examples mentioned by the researchers are the projection of images in art exhibitions as well as in advertising and gaming applications and in theme parks. The technology allows for the creation of extremely large surfaces and entices the audience into experimenting.

The key lies in the laminar airflow

The fog display consists of a laminar, non-turbulent airflow into which a thin fog screen is injected by means of separate nozzles. Together, the fog screen and the protective laminar airflow create a thin and crisp surface. A vacuum system can be used to remove humidity, and to ensure non-turbulence or to improve non-turbulence, but this is not necessary. Both film or still images can be projected onto the fog display, creating for instance swiftly flowing rapids or a brick wall. This means you can indeed walk straight through the wall, without breaking sweat. As well as fully penetrable, the fog display is non-poisonous, non-breakable and extremely light weight.

Early versions out of drinking straws and banana boxes

‘I knew about a few other fog screen methods, but they were all highly unreliable. I began to apply myself to the question of how we could create a better and more reliable mechanism. I talked about this with Karri Palovuori, and we soon produced the basic parameters for our idea,’ Ismo Rakkolainen says. Both Palovuori and Ismo Rakkolainen work at the Tampere University of Technology Signal Processing Laboratory.

Initially Ismo Rakkolainen wanted to keep his blueprint for the screen close to his chest, so he began working on the idea in his own living room. At this stage funding for the innovation was not yet forthcoming, so the very first versions were created using banana boxes and 2000 drinking straws. His wife, not surprisingly, had some doubts as to how serious a scientific exercise this was.

The prototype on display at the Academy’s stand in Turku is a more advanced version, standing almost 1.5 metres high. Mika Piirto from Tampere University of Technology has spent much of the summer working to further improve the mechanism, under the supervision of project director Ismo Rakkolainen.

An even more advanced model of the screen will be on show next year at Museum Centre Vapriikki and at the Communications museum in Tampere.

Heli Häivälä | alfa
Further information:
http://www.aka.fi/modules/intinfo/showinfo.cfm?infoid=3865

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>