Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The art of walking through walls made real

08.10.2002


Academy of Finland showed the way at Science Exhibition
The art of walking through walls made real


Walking through walls has just become possible. Senior researcher Ismo Rakkolainen and Professor Karri Palovuori from Tampere University of Technology have pioneered a fog display that is physically penetrable. A prototype of the screen was introduced to the public for the first time at the Academy of Finland stand at the Turku Science Exhibition on 4-6 October 2002. International patents are now pending on the innovation.


There are endless potential applications for the fog display. Among the examples mentioned by the researchers are the projection of images in art exhibitions as well as in advertising and gaming applications and in theme parks. The technology allows for the creation of extremely large surfaces and entices the audience into experimenting.

The key lies in the laminar airflow

The fog display consists of a laminar, non-turbulent airflow into which a thin fog screen is injected by means of separate nozzles. Together, the fog screen and the protective laminar airflow create a thin and crisp surface. A vacuum system can be used to remove humidity, and to ensure non-turbulence or to improve non-turbulence, but this is not necessary. Both film or still images can be projected onto the fog display, creating for instance swiftly flowing rapids or a brick wall. This means you can indeed walk straight through the wall, without breaking sweat. As well as fully penetrable, the fog display is non-poisonous, non-breakable and extremely light weight.

Early versions out of drinking straws and banana boxes

‘I knew about a few other fog screen methods, but they were all highly unreliable. I began to apply myself to the question of how we could create a better and more reliable mechanism. I talked about this with Karri Palovuori, and we soon produced the basic parameters for our idea,’ Ismo Rakkolainen says. Both Palovuori and Ismo Rakkolainen work at the Tampere University of Technology Signal Processing Laboratory.

Initially Ismo Rakkolainen wanted to keep his blueprint for the screen close to his chest, so he began working on the idea in his own living room. At this stage funding for the innovation was not yet forthcoming, so the very first versions were created using banana boxes and 2000 drinking straws. His wife, not surprisingly, had some doubts as to how serious a scientific exercise this was.

The prototype on display at the Academy’s stand in Turku is a more advanced version, standing almost 1.5 metres high. Mika Piirto from Tampere University of Technology has spent much of the summer working to further improve the mechanism, under the supervision of project director Ismo Rakkolainen.

An even more advanced model of the screen will be on show next year at Museum Centre Vapriikki and at the Communications museum in Tampere.

Heli Häivälä | alfa
Further information:
http://www.aka.fi/modules/intinfo/showinfo.cfm?infoid=3865

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>