Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The art of walking through walls made real

08.10.2002


Academy of Finland showed the way at Science Exhibition
The art of walking through walls made real


Walking through walls has just become possible. Senior researcher Ismo Rakkolainen and Professor Karri Palovuori from Tampere University of Technology have pioneered a fog display that is physically penetrable. A prototype of the screen was introduced to the public for the first time at the Academy of Finland stand at the Turku Science Exhibition on 4-6 October 2002. International patents are now pending on the innovation.


There are endless potential applications for the fog display. Among the examples mentioned by the researchers are the projection of images in art exhibitions as well as in advertising and gaming applications and in theme parks. The technology allows for the creation of extremely large surfaces and entices the audience into experimenting.

The key lies in the laminar airflow

The fog display consists of a laminar, non-turbulent airflow into which a thin fog screen is injected by means of separate nozzles. Together, the fog screen and the protective laminar airflow create a thin and crisp surface. A vacuum system can be used to remove humidity, and to ensure non-turbulence or to improve non-turbulence, but this is not necessary. Both film or still images can be projected onto the fog display, creating for instance swiftly flowing rapids or a brick wall. This means you can indeed walk straight through the wall, without breaking sweat. As well as fully penetrable, the fog display is non-poisonous, non-breakable and extremely light weight.

Early versions out of drinking straws and banana boxes

‘I knew about a few other fog screen methods, but they were all highly unreliable. I began to apply myself to the question of how we could create a better and more reliable mechanism. I talked about this with Karri Palovuori, and we soon produced the basic parameters for our idea,’ Ismo Rakkolainen says. Both Palovuori and Ismo Rakkolainen work at the Tampere University of Technology Signal Processing Laboratory.

Initially Ismo Rakkolainen wanted to keep his blueprint for the screen close to his chest, so he began working on the idea in his own living room. At this stage funding for the innovation was not yet forthcoming, so the very first versions were created using banana boxes and 2000 drinking straws. His wife, not surprisingly, had some doubts as to how serious a scientific exercise this was.

The prototype on display at the Academy’s stand in Turku is a more advanced version, standing almost 1.5 metres high. Mika Piirto from Tampere University of Technology has spent much of the summer working to further improve the mechanism, under the supervision of project director Ismo Rakkolainen.

An even more advanced model of the screen will be on show next year at Museum Centre Vapriikki and at the Communications museum in Tampere.

Heli Häivälä | alfa
Further information:
http://www.aka.fi/modules/intinfo/showinfo.cfm?infoid=3865

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>