Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prototype of machine that copies itself goes on show

04.06.2008
A University of Bath academic, who oversees a global effort to develop an open-source machine that ‘prints’ three-dimensional objects, is celebrating after the prototype machine succeeded in making a set of its own printed parts. The machine, named RepRap, will be exhibited publicly at the Cheltenham Science Festival (4-8 June 2008).

RepRap is short for replicating rapid-prototyper; it employs a technique called ‘additive fabrication’. The machine works a bit like a printer, but, rather than squirting ink onto paper, it puts down thin layers of molten plastic which solidify. These layers are built up to make useful 3D objects.

RepRap has, so far, been capable of making everyday plastic goods such as door handles, sandals and coat hooks. Now, the machine has also succeeded in copying all its own 3D-printed parts.

These parts have been printed and assembled by RepRap team member, Vik Olliver, in Auckland, New Zealand, into a new RepRap machine that can replicate the same set of parts for yet another RepRap machine and so on ad infinitum. While 3D printers have been available commercially for about 25 years, RepRap is the first that can essentially print itself.

The RepRap research and development project was conceived, and is directed, by Dr Adrian Bowyer, a senior lecturer in engineering in the Faculty of Engineering & Design at the University of Bath, UK.

Dr Bowyer said that: “These days, most people in the developed world run a professional-quality print works, photographic lab and CD-pressing plant in their own house, all courtesy of their home PC. Why shouldn't they also run their own desktop factory capable of making many of the things they presently buy in shops, too?

“The possibilities are endless. Now, people can make exactly what they want. If the design of an existing object does not quite suit their needs, they can easily redesign it on their PC and print that out, instead of making do with a mass-produced second-best design from the shops. They can also print out extra RepRap printers to give to their friends. Then those friends can make what they want too.”

Recently, Chris DiBona, Open Source Programs Manager at Google Inc, encouraged people to: "Think of RepRap as a China on your desktop."

Sir James Dyson, Chief Executive of the Dyson Group, said: “RepRap is a different, revolutionary way of approaching invention. It could allow people to change the ergonomics of a design to their own specific needs.”

Dr Bowyer hopes people will come to the Cheltenham Science Festival and see both the 'parent' and the 'child' RepRap machines in action for the first time together.

"RepRap is the most enjoyable research project I've ever run," he said. "Without the many talented and selfless volunteers the RepRap project has all round the world, it would have never succeeded so quickly."

Complete plans for the prototype RepRap 3D printer and detailed tutorials to aid motivated amateurs (and professionals) in assembling one are available, free-of-charge, at the RepRap website (details below). The materials, plus the minority of parts that the machine cannot print, cost about £300. All those non-printed parts can be bought at hardware shops or from online stores.

Dr Bowyer and several of the other Reprap team members will be available to answer questions and exhibit the parent and child RepRap printers in operation at the Cheltenham Science Festival from 4-8 June 2008.

Press Team | alfa
Further information:
http://reprap.org
http://tinyurl.com/6zq3nc
http://www.bath.ac.uk/news/releases/

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>