Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual human in HIV drug simulation

30.01.2008
The combined supercomputing power of the UK and US ‘national grids’ has enabled UCL (University College London) scientists to simulate the efficacy of an HIV drug in blocking a key protein used by the lethal virus. The method – an early example of the Virtual Physiological Human in action – could one day be used to tailor personal drug treatments, for example for HIV patients developing resistance to their drugs.

The study, published online today in the Journal of the American Chemical Society, ran a large number of simulations to predict how strongly the drug saquinavir would bind to three resistant mutants of HIV-1 protease, a protein produced by the virus to propagate itself. These protease mutations are associated with the disease’s resistance to saquinavir, an HIV-inhibitor drug.

The study, by Professor Peter Coveney and colleagues at the UCL Department of Chemistry, involved a sequence of simulation steps, performed across several supercomputers on the UK’s National Grid Service and the US TeraGrid, which took two weeks and used computational power roughly equivalent to that needed to perform a long-range weather forecast.

The idea behind the Virtual Physiological Human (VPH) is to link networks of computers across the world to simulate the internal workings of the human body. The VPH – mainly a research initiative at present – allows scientists to simulate the effects of a drug and see what is happening at the organ, tissue, cell and molecular level.

Although nine drugs are currently available to inhibit HIV-1 protease, doctors have no way of matching a drug to the unique profile of the virus as it mutates in each patient. Instead, they prescribe a course of drugs and then test whether these are working by analysing the patient’s immune response. One of the goals of VPH is for such ‘trial and error’ methods to eventually be replaced by patient-specific treatments tailored to a person’s unique genotype.

Professor Peter Coveney says: “This study represents a first step towards the ultimate goal of ‘on-demand’ medical computing, where doctors could one day ‘borrow’ supercomputing time from the national grid to make critical decisions on life-saving treatments.

“For example, for an HIV patient, a doctor could perform an assay to establish the patient’s genotype and then rank the available drugs’ efficacy against that patient’s profile based on a rapid set of large-scale simulations, enabling the doctor to tailor the treatment accordingly.

“We have some difficult questions ahead of us, such as how much of our computing resources could be devoted to helping patients and at what price. At present, such simulations – requiring a substantial amount of computing power – might prove costly for the National Health Service, but technological advances and those in the economics of computing would bring costs down.”

For the moment, Professor Coveney’s group is continuing to look at all the protease inhibitors in a similar way. The VPH initiative, now underway with 72 million euros of initial funding from the EU, will boost collaboration between clinicians and scientists to explore the scope for patient-specific medical treatments based on modern modelling and simulation methods.

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk
http://www.ucl.ac.uk/media/library/HIVcomputing

More articles from Information Technology:

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Beyond the clouds: Networked clouds in a production setting
04.04.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>