Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newcastle scientists develop ‘future proof’ computer systems

30.01.2008
Computer scientists from Newcastle University are leading an €18 million (£13.4m) EU project designed to make technology - from mobile phones to satellites – more robust and reliable.

With today’s computer systems complex and often susceptible to malicious attacks, it is becoming increasingly important to build-in resilience from the outset, rather than simply ‘adding it on’ at a later date.

The DEPLOY project, led by the School of Computing Science, will work across five of the most important sectors in industry today – transportation, automotive, space, telecommunication and business information.

Beginning this week (1st February), it builds upon a successful three-year project just completed by the University, which created new ways of building fault tolerance into computer systems.

These methods are now ready to be put to the test by some of the top names in industry, with five leading European companies already signed up: Siemens, Bosch, Space Systems, Nokia and SAP (Systems, Applications, and Products in Data Processing).

Work being carried out will feed into projects such as the 2013 European Space Agency’s mission to explore Mercury and train security on the Paris Metro.

Professor Sascha Romanovsky, who first came to the University on a one-year PhD scholarship from his native Russia 12 years ago, is the Project Director.

‘It is very unusual for a university to be leading a project like this as it’s normally industry-led, so it’s a great honour for us to be working with some of the top names in European industry,’ he said. ‘The industry partners put in 50 percent of their own money, which is a sure sign that they take this seriously.

‘From the start we’ve made it clear that we’re not going to carry out research that is not meeting industry’s needs. This project will only be a success if we are able to create what they need and can use.’

The scientists will be using formal engineering methods to test the fault tolerance of each system and refining these in an industrial setting to ensure they meet the needs of an increasingly technological society.

‘It’s often crucial that you can rely on these systems,’ explained Computing Science Professor Cliff Jones, who began his career working for IBM in the 1970s and has spent many years developing formal engineering methods for industry.

‘For example, there is a device being developed by Bosch where the car turns itself off when you pull up to traffic lights and then back on again when you go to pull off. The last thing you want is that failing, and then you’re left with a queue of irate drivers behind you, or even worse, the system turning the car off at completely the wrong moment as you’re driving along.

‘My belief is that simple systems are the only reliable ones. It comes down to reasoning – if they are too many options, then it becomes too difficult to predict what could happen.’

As well as leading the project, Newcastle University is also co-ordinating the dependability systems strand. This will involve working with several of the industrial partners to develop the technology and train them in the use of the new systems.

A pilot will be set up in each different industry sector, which will be tested and developed for a year before going into production.

‘Any system we create needs to be self-sufficient and the staff need to understand our methods and tools,’ explained Professor Romanovsky. ‘This is not just a four-year project which will end when we walk away from it - the whole point is that these methods last for many years to come.’

This project is a continuation of Newcastle University’s previous successful three-year EU project, RODIN (Rigorous Open Development Environment for Complex Systems) which has just been completed and gained an ‘excellent’ rating from the European Commission. This project researched and developed the design of fault-tolerant systems, paving the way for new technology to be deployed in an industry setting.

‘In our application we didn’t use fancy buzzwords, or try to blind people with science, but kept right to the point,’ said Professor Romanovsky. ‘It’s such a good project that it speaks for itself, and this is why the EU and industry are investing in it and taking us seriously. We’ve been developing this technology for 25 years - now we’re able to take it to a new level, on a much larger scale.’

Michael Warwicker | alfa
Further information:
http://www.deploy-project.eu/

More articles from Information Technology:

nachricht Who can find the fish that makes the best sound?
28.02.2017 | Technische Universität Wien

nachricht Many Android password managers unsafe
28.02.2017 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>