Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Newcastle scientists develop ‘future proof’ computer systems

30.01.2008
Computer scientists from Newcastle University are leading an €18 million (£13.4m) EU project designed to make technology - from mobile phones to satellites – more robust and reliable.

With today’s computer systems complex and often susceptible to malicious attacks, it is becoming increasingly important to build-in resilience from the outset, rather than simply ‘adding it on’ at a later date.

The DEPLOY project, led by the School of Computing Science, will work across five of the most important sectors in industry today – transportation, automotive, space, telecommunication and business information.

Beginning this week (1st February), it builds upon a successful three-year project just completed by the University, which created new ways of building fault tolerance into computer systems.

These methods are now ready to be put to the test by some of the top names in industry, with five leading European companies already signed up: Siemens, Bosch, Space Systems, Nokia and SAP (Systems, Applications, and Products in Data Processing).

Work being carried out will feed into projects such as the 2013 European Space Agency’s mission to explore Mercury and train security on the Paris Metro.

Professor Sascha Romanovsky, who first came to the University on a one-year PhD scholarship from his native Russia 12 years ago, is the Project Director.

‘It is very unusual for a university to be leading a project like this as it’s normally industry-led, so it’s a great honour for us to be working with some of the top names in European industry,’ he said. ‘The industry partners put in 50 percent of their own money, which is a sure sign that they take this seriously.

‘From the start we’ve made it clear that we’re not going to carry out research that is not meeting industry’s needs. This project will only be a success if we are able to create what they need and can use.’

The scientists will be using formal engineering methods to test the fault tolerance of each system and refining these in an industrial setting to ensure they meet the needs of an increasingly technological society.

‘It’s often crucial that you can rely on these systems,’ explained Computing Science Professor Cliff Jones, who began his career working for IBM in the 1970s and has spent many years developing formal engineering methods for industry.

‘For example, there is a device being developed by Bosch where the car turns itself off when you pull up to traffic lights and then back on again when you go to pull off. The last thing you want is that failing, and then you’re left with a queue of irate drivers behind you, or even worse, the system turning the car off at completely the wrong moment as you’re driving along.

‘My belief is that simple systems are the only reliable ones. It comes down to reasoning – if they are too many options, then it becomes too difficult to predict what could happen.’

As well as leading the project, Newcastle University is also co-ordinating the dependability systems strand. This will involve working with several of the industrial partners to develop the technology and train them in the use of the new systems.

A pilot will be set up in each different industry sector, which will be tested and developed for a year before going into production.

‘Any system we create needs to be self-sufficient and the staff need to understand our methods and tools,’ explained Professor Romanovsky. ‘This is not just a four-year project which will end when we walk away from it - the whole point is that these methods last for many years to come.’

This project is a continuation of Newcastle University’s previous successful three-year EU project, RODIN (Rigorous Open Development Environment for Complex Systems) which has just been completed and gained an ‘excellent’ rating from the European Commission. This project researched and developed the design of fault-tolerant systems, paving the way for new technology to be deployed in an industry setting.

‘In our application we didn’t use fancy buzzwords, or try to blind people with science, but kept right to the point,’ said Professor Romanovsky. ‘It’s such a good project that it speaks for itself, and this is why the EU and industry are investing in it and taking us seriously. We’ve been developing this technology for 25 years - now we’re able to take it to a new level, on a much larger scale.’

Michael Warwicker | alfa
Further information:
http://www.deploy-project.eu/

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

Beyond the limits of conventional electronics: stable organic molecular nanowires

24.05.2018 | Power and Electrical Engineering

These could revolutionize the world

24.05.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>