Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum Technology for Advanced Imaging – QUILT

24.04.2018

Selected preparation, control and use of individual photons and quantum states for modern applications – in October 2017, six Fraunhofer Institutes launched a new lighthouse project: QUILT (Quantum Methods for Advanced Imaging Solutions). The scientists at the Fraunhofer Institute for Laser Technology ILT have begun to develop robust, marketable photon sources for imaging processes based on quantum technology. Conceivable areas of application can be found in medical or measuring technology, in which new areas of the electromagnetic spectrum can be tapped and the limits of imaging extended.

Silicon-based transistors, lasers and GPS are indispensable in today’s life. These are just a few of the many applications that emerged from a first generation of quantum technologies using collective particle phenomena in quantum physics. A “second quantum revolution” will open up new possibilities: quantum physical systems of single particles, e.g. photons, can now be manipulated for targeted and future use in various applications.


Parametric source for entangled photons.

© Fraunhofer ILT, Aachen, Germany / Volker Lannert

New, Economical Quantum Technologies

In the QUILT Lighthouse Project, six Fraunhofer Institutes are bundling their scientific expertise and technological know-how in the field of quantum imaging to transfer new findings from basic research into market-oriented applications. Prof. Andreas Tünnermann, director of the Fraunhofer Institute for Applied Optics and Precision Engineering IOF, and Prof. Karsten Buse, director of the Fraunhofer Institute for Physical Measurement Techniques IPM, are coordinating the joint project, which is funded by the Fraunhofer-Gesellschaft. The project kick-off was on March 1, 2018 in Berlin and the project will last three years.

“One goal of the Lighthouse Project is to evaluate quantum-technological concepts that are currently still in the early stages of development in view of their market and application potential and to develop rewarding approaches as to their technological maturity,” explains Dr. Bernd Jungbluth, group manager at Fraunhofer ILT. Each of the project partners will be investigating specific, largely untapped wavelength ranges and working closely with world-renowned groups from basic research, e.g. with the Institute of Quantum Optics and Quantum Information of the Austrian Academy of Sciences and the Max Planck Institute for the Science of Light.

New Imaging with Previously Unused Wavelengths

The scientists of Fraunhofer ILT are aiming for mid-infrared wavelengths (MIR) for use in future quantum imaging. In this area, which is also called the “fingerprint area”, many substances have characteristic absorption lines. However, suitable detectors are technically complex, expensive and limited by low sensitivity. Nevertheless, thanks to the phenomenon of entanglement, corresponding photons can be used for measurements in the fingerprint region.

For this purpose, a nonlinear optical crystal – a crystal with special physical properties – is excited with a laser. In this process, individual photons of the laser are converted in a parametric process into pairs of entangled photons, which can have different wavelengths. Entangled means that the two photons generated are considered to be a single quantum system and their properties are, therefore, highly correlated. When a property of one of the two partners is measured, properties of the second partner can immediately be known.

Manipulating Tailor-Made Photons

Fraunhofer ILT is currently developing a SPDC (spontaneous parametric down-conversion) source for generating entangled photons, built and characterized for later quantum imaging. The source will produce a signal wave that can be easily detected with silicon technology and a second wavelength in the MIR for interaction with the object to be measured. The characteristics of such a source result from the design in conjunction with suitable material, geometry and beam parameters. Decisive for applications is not necessarily high power or a large photon flux at a certain wavelength, but a high pair rate and a good correlation of the photons generated.

Fraunhofer ILT has already acquired a great deal of know-how on parametric processes and materials it has developed, such as Optical Parametric Oscillators (OPO). Since the materials are well-understood, they will be designed as very thin crystals for new quantum technologies so that only a few photons are lost through absorption in the material. Florian Elsen, project manager for QUILT at Fraunhofer ILT, explains: “Quantum imaging with low photon numbers could enable better signal-to-noise ratios compared to traditional measurement situations, or applications in which high intensities are detrimental”.

In addition to an understanding of parametric processes and tailor-made optics design, implementing the technology is crucial for marketing and utilizing quantum optical systems. Here, too, Fraunhofer ILT has a wealth of experience and robust technology platforms, for example from the development of satellite-based lasers and OPOs for climate research. In the field of quantum technologies, the institute will mainly focus on creating systems that are not only compact, but also robust. In QUILT, the scientists are therefore developing processes to better write optical waveguides with ultrashort laser pulses.

On this basis, integrated interferometers for imaging and spectroscopy in the fingerprint area are being implemented. “With parametric photon sources, integrated optics and packaging processes, we can develop a broad portfolio of solutions. In addition to imaging, these also include cross-sectional technologies for applications in quantum communication or quantum computing, for example”, says Dr. Arnold Gillner, head of the competence area “Ablation and Joining” at Fraunhofer ILT and sub-project manager in QUILT.

Perspectives of Quantum Photonics at the AKL'18

You can get further information on the potential of quantum photonics for applications at the “AKL'18 – International Laser Technology Congress” in Aachen: Current results will be presented by Prof. Ronald Hanson from QuTech, Dr. Robert Rölver of the Robert Bosch GmbH and Dr. Thierry Debuisschert of Thales Research & Technology on May 4, 2018 in the session “Laser Beam Sources”.

Project Partners of the Fraunhofer Lighthouse Project QUILT

- Fraunhofer Institute for Laser Technology ILT
- Fraunhofer Institute for Microelectronic Circuits and Systems IMS
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF
- Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB
- Fraunhofer Institute for Physical Measurement Techniques IPM
- Fraunhofer Institute for Industrial Mathematics ITWM

Contact

Florian Elsen M. Sc.
Group Nonlinear Optics and Tunable Lasers
Telephone +49 241 8906-224
florian.elsen@ilt.fraunhofer.de

Dr. Bernd Jungbluth
Group Manager Non-linear Optics and Tunable Lasers
Telephone +49 241 8906-414
bernd.jungbluth@ilt.fraunhofer.de

Dr. Arnold Gillner
Head of the Competence Area Ablation and Joining
Telephone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de/en

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

More articles from Information Technology:

nachricht Powerful IT security for the car of the future – research alliance develops new approaches
25.05.2018 | Universität Ulm

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>