Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computers: 10-fold boost in stability achieved

18.10.2016

'Dressed qubit' maintains delicate superposition long enough to allow useful calculations

Australian engineers have created a new quantum bit which remains in a stable superposition for 10 times longer than previously achieved, dramatically expanding the time during which calculations could be performed in a future silicon quantum computer.


This is a scanning electron microscope image of a device, similar to the one used. Highlighted are the positions of the tuning gates (red), the microwave antenna (blue), and the single electron transistor used for spin readout (yellow).

Credit: Guilherme Tosi & Arne Laucht/UNSW


This is an artist''s impression of a single-atom electron spin, hosted in a silicon crystal and dressed by an oscillating electromagnetic field.

Credit: Arne Laucht/UNSW

The new quantum bit, made up of the spin of a single atom in silicon and merged with an electromagnetic field - known as 'dressed qubit' - retains quantum information for much longer that an 'undressed' atom, opening up new avenues to build and operate the superpowerful quantum computers of the future.

The result by a team at Australia's University of New South Wales (UNSW), appears today in the online version of the international journal, Nature Nanotechnology.

"We have created a new quantum bit where the spin of a single electron is merged together with a strong electromagnetic field," said Arne Laucht, a Research Fellow at the School of Electrical Engineering & Telecommunications at UNSW, and lead author of the paper. "This quantum bit is more versatile and more long-lived than the electron alone, and will allow us to build more reliable quantum computers."

Building a quantum computer has been called the 'space race of the 21st century' - a difficult and ambitious challenge with the potential to deliver revolutionary tools for tackling otherwise impossible calculations, such as the design of complex drugs and advanced materials, or the rapid search of massive, unsorted databases.

Its speed and power lie in the fact that quantum systems can host multiple 'superpositions' of different initial states, which in a computer are treated as inputs which, in turn, all get processed at the same time.

"The greatest hurdle in using quantum objects for computing is to preserve their delicate superpositions long enough to allow us to perform useful calculations," said Andrea Morello, leader of the research team and a Program Manager in the Centre for Quantum Computation & Communication Technology (CQC2T) at UNSW.

"Our decade-long research program had already established the most long-lived quantum bit in the solid state, by encoding quantum information in the spin of a single phosphorus atom inside a silicon chip, placed in a static magnetic field," he said.

What Laucht and colleagues did was push this further: "We have now implemented a new way to encode the information: we have subjected the atom to a very strong, continuously oscillating electromagnetic field at microwave frequencies, and thus we have 'redefined' the quantum bit as the orientation of the spin with respect to the microwave field."

The results are striking: since the electromagnetic field steadily oscillates at a very high frequency, any noise or disturbance at a different frequency results in a zero net effect. The researchers achieved an improvement by a factor of 10 in the time span during which a quantum superposition can be preserved.

Specifically, they measured a dephasing time of T2*=2.4 milliseconds - a result that is 10-fold better than the standard qubit, allowing many more operations to be performed within the time span during which the delicate quantum information is safely preserved.

"This new 'dressed qubit' can be controlled in a variety of ways that would be impractical with an 'undressed qubit',", added Morello. "For example, it can be controlled by simply modulating the frequency of the microwave field, just like in an FM radio. The 'undressed qubit' instead requires turning the amplitude of the control fields on and off, like an AM radio.

"In some sense, this is why the dressed qubit is more immune to noise: the quantum information is controlled by the frequency, which is rock-solid, whereas the amplitude can be more easily affected by external noise".

Since the device is built upon standard silicon technology, this result paves the way to the construction of powerful and reliable quantum processors based upon the same fabrication process already used for today's computers.

The UNSW team leads the world in developing quantum computing in silicon, and Morello's team is part of the consortium of UNSW researchers who have struck a A$70 million deal between UNSW, the researchers, business and the Australian government to develop a prototype silicon quantum integrated circuit - the first step in building the world's first quantum computer in silicon.

A functional quantum computer would allow massive increases in speed and efficiency for certain computing tasks - even when compared with today's fastest silicon-based 'classical' computers. In a number of key areas - such as searching large databases, solving complicated sets of equations, and modelling atomic systems such as biological molecules and drugs - they would far surpass today's computers.They would also be enormously useful in the finance and healthcare industries, and for government, security and defence organisations.

Quantum computers could identify and develop new medicines by greatly accelerating the computer-aided design of pharmaceutical compounds (and minimising lengthy trial and error testing), and develop new, lighter and stronger materials spanning consumer electronics to aircraft. They would also make possible new types of computational applications and solutions that are beyond our ability to foresee.

###

Other researchers who contributed to the work include members of Morello's CQC2T team at UNSW - Rachpon Kalra, Stephanie Simmons, Juan Dehollain, Juha Muhonen, Fahd Mohiyaddin and Solomon Freer; Andrew Dzurak and Fay Hudson at the Australian National Fabrication Facility, David Jamieson and Jeffrey McCallum from the CQC2T University of Melbourne team, and Kohei Itoh of Japan's Keio University.

BACKGROUND ON UNSW'S FACULTY OF ENGINEERING, AND FUNDING OF THE RESEARCH

UNSW's Faculty of Engineering is the powerhouse of engineering research in Australia, comprising of nine schools, 21 research centres and participating or leading 10 Cooperative Research Centres. It is ranked in the world's top 50 engineering faculties, and home to Australia's largest cohort of engineering undergraduate, postgraduate, domestic and international students.

UNSW itself has 52,000 students from 120 nations; it is ranked #1 in Australia for producing millionaires (#33 globally) and ranked #1 in Australia for graduates who create technology start-ups.

The UNSW team's research is supported by the Australian Research Council, the U.S. Army Research Office, the Commonwealth Bank of Australia and UNSW. The devices were built at the Australian National Fabrication Facility, supported by the National Collaborative Research Infrastructure Strategy.

Media Contact

Wilson da Silva
w.dasilva@unsw.edu.au
61-407-907-017

 @UNSWnews

http://www.unsw.edu.au

Wilson da Silva | EurekAlert!

More articles from Information Technology:

nachricht Fingerprints of quantum entanglement
16.02.2018 | University of Vienna

nachricht Simple in the Cloud: The digitalization of brownfield systems made easy
07.02.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>