Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PC steel wires on concrete and steel bridges now visible with terahertz waves

14.12.2015

Damage to steel wires inside external cables now visible through non-contact/non-destructive methods

Researchers at Tohoku University have found a way to make covered or hidden PC steel wires visible, by developing a new terahertz wave light source featuring both light and radio-wave characteristics.


This is a photograph of typical extradosed bridge construction, in which one of the most important parts is the sustaining PC bundled steel cables sealed with invisible polyethylene.

Credit: Yutaka Oyama


This is a photograph of 60mm diameter PC steel cable for bridge construction and cross sectional structure.

Credit: Yutaka Oyama


This is a photograph of THz imaging of PC steel cable corresponding to the sealed and unsealed parts of the cable. Polyethylene outer mold was partially removed. Credit: Yutaka Oyama

This new technology will be especially useful in the safety inspection of extradosed and other types of bridges that use PC steel wires hidden inside external cables covered by resin jackets. (see fig.1)

External cables are important structural elements for dispersing loads in extradosed bridges and they have extremely high levels of safety with regard to corrosion. This is due to the fact that they are protectively covered in polyethylene resin or similar resins.

Destructive inspections, in which the outer coating is removed from the cable, run the risk of water and other forms of moisture penetrating the wires and causing corrosion after the inspection has been completed.

The technology developed by Professor Yutaka Oyama and his team at the Graduate School of Engineering, is a unique optical measurement system comprising a digital device terahertz light source and a laser terahertz light source with high penetrative capabilities for polyethylene resin and similar resins.

This enables non-destructive imaging of the inside of PC steel wire to be carried out without removing the external resin cover by making use of the terahertz wave characteristics that efficiently reflect metal surfaces within the resin. (see fig. 2 and 3)

The team also found that contrary to the radioactive rays conventionally used for non-destructive detection purposes, the new terahertz waves have no adverse effects on the human body.

Part of the results of this research was first announced at the 2015 CLEO (Conference on Lasers and Electro-Optics) Pacific Rim Conference held in Busan, South Korea, in August.

Yutaka Oyama | EurekAlert!

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>