Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parallel programming may not be so daunting

25.03.2014

'Lock-free' parallel algorithms may match performance of more complex 'wait-free' algorithms

Computer chips have stopped getting faster: The regular performance improvements we've come to expect are now the result of chipmakers' adding more cores, or processing units, to their chips, rather than increasing their clock speed.

In theory, doubling the number of cores doubles the chip's efficiency, but splitting up computations so that they run efficiently in parallel isn't easy. On the other hand, say a trio of computer scientists from MIT, Israel's Technion, and Microsoft Research, neither is it as hard as had been feared.

Commercial software developers writing programs for multicore chips frequently use so-called "lock-free" parallel algorithms, which are relatively easy to generate from standard sequential code. In fact, in many cases the conversion can be done automatically.

Yet lock-free algorithms don't come with very satisfying theoretical guarantees: All they promise is that at least one core will make progress on its computational task in a fixed span of time. But if they don't exceed that standard, they squander all the additional computational power that multiple cores provide.

In recent years, theoretical computer scientists have demonstrated ingenious alternatives called "wait-free" algorithms, which guarantee that all cores will make progress in a fixed span of time. But deriving them from sequential code is extremely complicated, and commercial developers have largely neglected them.

In a paper to be presented at the Association for Computing Machinery's Annual Symposium on the Theory of Computing in May, Nir Shavit, a professor in MIT's Department of Electrical Engineering and Computer Science; his former student Dan Alistarh, who's now at Microsoft Research; and Keren Censor-Hillel of the Technion demonstrate a new analytic technique suggesting that, in a wide range of real-world cases, lock-free algorithms actually give wait-free performance.

"In practice, programmers program as if everything is wait-free," Shavit says. "This is a kind of mystery. What we are exposing in the paper is this little-talked-about intuition that programmers have about how [chip] schedulers work, that they are actually benevolent."

The researchers' key insight was that the chip's performance as a whole could be characterized more simply than the performance of the individual cores. That's because the allocation of different "threads," or chunks of code executed in parallel, is symmetric. "It doesn't matter whether thread 1 is in state A and thread 2 is in state B or if you just swap the states around," says Alistarh, who contributed to the work while at MIT. "What we noticed is that by coalescing symmetric states, you can simplify this a lot."

In a real chip, the allocation of threads to cores is "a complex interplay of latencies and scheduling policies," Alistarh says. In practice, however, the decisions arrived at through that complex interplay end up looking a lot like randomness. So the researchers modeled the scheduling of threads as a process that has at least a little randomness in it: At any time, there's some probability that a new thread will be initiated on any given core.

The researchers found that even with a random scheduler, a wide range of lock-free algorithms offered performance guarantees that were as good as those offered by wait-free algorithms.

That analysis held, no matter how the probability of thread assignment varied from core to core. But the researchers also performed a more specific analysis, asking what would happen when multiple cores were trying to write data to the same location in memory and one of them kept getting there ahead of the others. That's the situation that results in a lock-free algorithm's worst performance, when only one core is making progress.

For that case, they considered a particular set of probabilities, in which every core had the same chance of being assigned a thread at any given time. "This is kind of a worst-case random scheduler," Alistarh says. Even then, however, the number of cores that made progress never dipped below the square root of the number of cores assigned threads, which is still better than the minimum performance guarantee of lock-free algorithms.

###

Additional background

Archive: "Multicore may not be so scary": http://web.mit.edu/newsoffice/2010/multicore-0930.html

Abby Abazorius | EurekAlert!

Further reports about: Computing Engineering MIT Technion Technology decisions individual processing programming randomness technique

More articles from Information Technology:

nachricht The app for frequent fliers and those who are radiation-conscious
15.04.2015 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Passenger-focused air conditioning
14.04.2015 | Technische Universitaet Muenchen

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Astronomers reveal supermassive black hole's intense magnetic field

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a supermassive black hole in a distant galaxy

Astronomers from Chalmers University of Technology have used the giant telescope Alma to reveal an extremely powerful magnetic field very close to a...

Im Focus: A “pin ball machine” for atoms and photons

A team of physicists from MPQ, Caltech, and ICFO proposes the combination of nano-photonics with ultracold atoms for simulating quantum many-body systems and creating new states of matter.

Ultracold atoms in the so-called optical lattices, that are generated by crosswise superposition of laser beams, have been proven to be one of the most...

Im Focus: UV light robot to clean hospital rooms could help stop spread of 'superbugs'

Can a robot clean a hospital room just as well as a person?

According to new research out of the Texas A&M Health Science Center College of Medicine, that is indeed the case. Chetan Jinadatha, M.D., M.P.H., assistant...

Im Focus: Graphene pushes the speed limit of light-to-electricity conversion

Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells.

Im Focus: Study shows novel pattern of electrical charge movement through DNA

Electrical charges not only move through wires, they also travel along lengths of DNA, the molecule of life. The property is known as charge transport.

In a new study appearing in the journal Nature Chemistry, authors, Limin Xiang, Julio Palma, Christopher Bruot and others at Arizona State University's...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

 
Latest News

Engineer Improves Rechargeable Batteries with MoS2 Nano 'Sandwich'

17.04.2015 | Power and Electrical Engineering

Comparing Climate Models to Real World Shows Differences in Precipitation Intensity

17.04.2015 | Earth Sciences

A blueprint for clearing the skies of space debris

17.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>