Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic computers are coming

15.07.2016

Scientists found a molecule that will help to make organic electronic devices

A team of the Lomonosov MSU researchers in collaboration with their German colleagues from the Institute of Polymer Research in Dresden (Leibniz Institute) managed to find a molecule that, to their opinion, could give the impetus to the development of organic electronics. The results of the work were published in Advanced Materials.


The energy levels of the studied systems and a synchrotron X-ray diffractogram measured on a thin film of an organic semiconductor doped with a derivative of [3]-radialene.

Credit: The Lomonosov Moscow Stte University

Scientists from the Moscow State University together with colleagues from Germany have found that a derivative of [3]-radialene, a molecule known to the science for nearly 30 years, can be used to create organic semiconductors. Dmitry Ivanov, the Head of the Laboratory of Materials Engineering at the Department of Fundamental Physics and Chemical Engineering, Moscow State University, believes that the achievement will greatly contribute to the development of organic electronics and, in particular, to fabrication of organic light emitting diodes and new classes of organic solar cells.

Organic or "plastic" electronics is a relatively young scientific field, which came to life about 15-20 years ago. Its purpose is the development of electronic devices based on organic materials. This type of devices is yet inferior to the standard silicon-based electronics in terms of performance, and also less durable. But it also has advantages -- lightness, thinness, flexibility, transparency, and most importantly -- plastic electronics is much cheaper than silicon. The main applications of organic electronics include solar cells, which will be much cheaper than the silicon-based modules (high cost is one of the reasons, which restricts the latter from covering large areas and thus make better use of the sun energy). Also, organic electronics can be used to design organic light emitting devices and field-effect transistors.

The molecule in question is the so-called dopant, whose addition to a semiconducting polymer substantially increases its electrical conductivity. The dopants for inorganic semiconductors are widely used already for decades, however, according to one of the article's co-authors, Dmitry Ivanov, for organic conductors this field is far less studied. Currently, the most commonly used are fluorinated dopants. In combination with different organic semiconductors they are able to dramatically increase their electrical conductivity, but not all polymers that are used today in the "plastic" electronics are suitable.

'Together with our Drezden colleagues we decided to design a completely new type of low molecular weight dopant for the organic semiconductor,' says Dmitry Ivanov. 'And here it was important to choose a molecule that it was not only suitable in its energy levels, but, importantly, the dopant must be well mixed with the polymer, so that in contact with the polymer it does not segregate in a separate phase, eventually crystallizing and, in fact, losing contact with the polymer'.

The main contribution of Ivanov's laboratory in this work consisted in exploring the physics of the phase transitions, physics of mixing in such binary systems, in the other words -- in finding a suitable candidate in terms of polymer physics.

And such a candidate was found. It happened to be a derivative of [3]-radialene. This is a small planar molecule in which the carbon atoms are connected to form a triangular structure. Among other potentially interesting compounds, [3]-radialene has the most energetically suitable LUMO level, i.e. the lowest unoccupied molecular orbital. This means that with its help the electrons are easily extracted from the semiconducting polymer matrix, becoming free charges and thereby increasing the conductivity of the doped material. [3]-Radialene thus becomes the strongest dopant for the organic semiconductor among those that are known in the scientific literature.

The experiments with the [3]-radialene, also confirmed by the results of quantum-chemical calculations, show that the substance is well mixed with a semiconducting polymer and allows to increase the electrical conductivity of the polymer by several tens and even hundreds of times. It has been found that up to 50 percent of the dopant's content in the polymer the phase separation does not occur, but the crystalline structure of the polymer is gradually changed. This meant that the dopant molecules are included in the polymer crystalline lattice and form the so-called co-crystal. And the formation of co-crystals, according to Ivanov, is precisely one of the main reasons for the high efficiency of the new compound.

The described new dopant, as well its fluorinated and currently the most popular analogues, belongs to the category of electron-deficient organic dopants, Dmitry Ivanov tells. 'Fluorine substituents are known to strongly pull the electrons away from the central part of the molecule, which increases the whole conductivity of the doped polymer. In the present work, the chemical structure of the dopant is completely different, and, in fact, appears to be even better. Perfect mixing of our dopant with the polymer matrix is, I think, the key to its performance. This could pave the way to fabrication of new organic solar cells with improved characteristics. We also think about production of organic field-effect transistors. I think it will give a significant boost to the development of organic electronic devices.'

Media Contact

Vladimir Koryagin
science-release@rector.msu.ru

http://www.msu.ru 

Vladimir Koryagin | EurekAlert!

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>