Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New transregional special research field at the universities of Stuttgart and Constance

28.05.2015

Eight million Euros for Visual Computing

In its meeting on 21st May 2015 the German Research Foundation (DFG) approved the establishment of a new transregional special research field (SFB/Transregio) at the universities of Stuttgart and Constance.


For this purpose findings from eye-tracking studies, among others, are being incorporated into new methods and applications.

(Photo: University of Stuttgart, VISUS).

The new SFB/Transregio 161 “Quantitative Methods for Visual Computing“ deals with the computer-based processing and representation of image information with the objective of making the quality and applicability of data and images measureable and determinable. The joint project is being supported by the universities of Stuttgart and Constance; the spokesperson is Professor Daniel Weiskopf from the Visualisation Institute at the University of Stuttgart.

The Max-Planck-Institute for Biological Cybernetics in Tübingen is also involved in the planned activities. The DFG is initially funding the research for four years with around eight million Euros. Moreover, the University of Stuttgart is also jointly involved in the new Transregio wave phenomena: analysis and numerics (contact university Karlsruhe Institute of Technology, KIT).

“The acquisition of the new special research field underlines the special orientation of Computer Science at the University of Stuttgart, that unites a broad spectrum of competences in terms of everything to do with recording, processing, analysing and representing visual information under one roof“, explained the Rector of the University of Stuttgart, Professor Wolfram Ressel. “The Visualisation Institute in particular is unique throughout Germany as a central university research facility and illustrates our excellent expertise.“

The SFB/Transregio 161 deals with visual computing, i.e. the computer-based processing and representation of image information. This conceals numerous applications from research and industry as well as the private environment, for instance the visualisation of measurement data or simulations, virtual maps and round trips or computer-based film scenes.

“Computer scientists from various faculties are developing new techniques together with engineers and psychologists in order to simplify the representation and handling of constantly increasing data quantities and to further enhance the quality of computer-based images“, said Professor Daniel Weiskopf, spokesperson for the new research association. “Up to now, however, the quantifiability of visual computing methods has frequently been neglected. We want to rise to this challenge.“

The objective of the around 40 scientists from the new research association is to make the quality and accuracy of existing and new visual computing methods measureable and determinable and to coordinate the requirements of various applications and users.

“We will conduct studies and measurements, check visualisations and investigate interaction possibilities“, explained Professor Oliver Deussen from the University of Constance. “On this basis existing techniques and algorithms should be optimised and further developed.“

The research team will concentrate, for example, on the effect of virtual environments and city models on humans, the recording and representation of three-dimensional data of real scenes or from simulations and on new technologies such as brain-computer-interfaces.

Does the representation contain all the important information? How strenuous is it for a person to comprehend this? Which added value do new interaction possibilities offer? These and similar questions should be answered by the upcoming research activities in order to create a comprehensive quantitative basis and to drive forward progress in this field.

The special research fields funded by the DFG are research facilities from a university established for a period of up to twelve years. An SFB/Transregio thereby covers several research locations. At the University of Stuttgart a total of six special research fields have been operating up to now, three of these in cooperation with external association partners. The University of Constance has had two special research fields up to now. The SFB/Transregio 161 “Quantitative Methods for Visual Computing“ will take up its research work on 1st July.

Furthermore, the University of Stuttgart is jointly involved in the new Transregio wave phenomena: analysis and numerics (concact university Karlsruhe Institute of Technology, KIT). The objective of this special research field lies in analytically understanding the propogation of waves in realistic conditions, to simulate them numerically and ultimately to also control them.

The underlying methodical approach exists in the interdependence of mathematical analysis and numerics. In this way the research program concentrates on characteristic wave phenomena, like the occurrence of stationary and wandering waves or wave fronts, oscillations and resonances, wave guidance as well as reflection, breaking and control of waves. Besides the basic research on waves, the application-related perspective is geared towards optics and photonics, biomedical technology and applied geophysics.

Contact
Prof. Daniel Weiskopf, University of Stuttgart, Visualisation Institute at the University of Stuttgart, Tel. 0711/685-88602, Email: daniel.weiskopf (at) visus.uni-stuttgart.de
Prof. Oliver Deussen, University of Constance, Faculty of Computer Science and Information Sciences, Tel. 07531/88-2778, Email: oliver.deussen (at) uni-konstanz.de
Andrea Mayer-Grenu, University of Stuttgart, Abt. University Communication, Tel. 0711/685-82176,
Email: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | Universität Stuttgart
Further information:
http://www.uni-stuttgart.de/

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>