Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology could improve use of small-scale hydropower in developing nations

01.07.2016

Engineers at Oregon State University have created a new computer modeling package that people anywhere in the world could use to assess the potential of a stream for small-scale, "run of river" hydropower, an option to produce electricity that's of special importance in the developing world.


This image shows both a model and a working small scale hydropower system in the central Oregon Cascade Range.

Photo courtesy of Oregon State University

The system is easy to use; does not require data that is often unavailable in foreign countries or remote locations; and can consider hydropower potential not only now, but in the future as projected changes in climate and stream runoff occur.

OSU experts say that people, agencies or communities interested in the potential for small-scale hydropower development can much more easily and accurately assess whether it would meet their current and future energy needs.

Findings on the new assessment tool have been published in Renewable Energy, in work supported by the National Science Foundation.

"These types of run-of-river hydropower developments have a special value in some remote, mountainous regions where electricity is often scarce or unavailable," said Kendra Sharp, the Richard and Gretchen Evans Professor in Humanitarian Engineering in the OSU College of Engineering.

"There are parts of northern Pakistan, for instance, where about half of rural homes don't have access to electricity, and systems such as this are one of the few affordable ways to produce it. The strength of this system is that it will be simple for people to use, and it's pretty accurate even though it can work with limited data on the ground."

The new technology was field-tested at a 5-megawatt small-scale hydropower facility built in the early 1980s on Falls Creek in the central Oregon Cascade Range. At that site, it projected that future climate changes will shift its optimal electricity production from spring to winter and that annual hydropower potential will slightly decrease from the conditions that prevailed from 1980-2010.

Small-scale hydropower, researchers say, continues to be popular because it can be developed with fairly basic and cost-competitive technology, and does not require large dams or reservoirs to function. Although all forms of power have some environmental effects, this approach has less impact on fisheries or stream ecosystems than major hydroelectric dams. Hydroelectric power is also renewable and does not contribute to greenhouse gas emissions.

One of the most basic approaches is diverting part of a stream into a holding basin, which contains a self-cleaning screen that prevents larger debris, insects, fish and objects from entering the system. The diverted water is then channeled to and fed through a turbine at a lower elevation before returning the water to the stream.

The technology is influenced by the seasonal variability of stream flow, the "head height," or distance the water is able to drop, and other factors. Proper regulations to maintain minimum needed stream flow can help mitigate environmental impacts.

Most previous tools used to assess specific sites for their small-scale hydropower potential have not been able to consider the impacts of future changes in weather and climate, OSU researchers said, and are far too dependent on data that is often unavailable in developing nations.

This free, open source software program was developed by Thomas Mosier, who at the time was a graduate student at OSU, in collaboration with Sharp and David Hill, an OSU associate professor of coastal and ocean engineering. It is now available to anyone on request by contacting Kendra.sharp@oregonstate.edu.

This system will allow engineers and policy makers to make better decisions about hydropower development and investment, both in the United States and around the world, OSU researchers said in the study.

Kendra Sharp | EurekAlert!

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>