Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New standard helps optical trackers follow moving objects precisely

23.11.2016

Throwing a perfect strike in virtual bowling doesn't require your gaming system to precisely track the position and orientation of your swinging arm. But if you're operating a robotic forklift around a factory, manipulating a mechanical arm on an assembly line or guiding a remote-controlled laser scalpel inside a patient, the ability to pinpoint exactly where it is in three-dimensional (3-D) space is critical.

To make that measurement more reliable, a public-private team led by the National Institute of Standards and Technology (NIST) has created a new standard test method to evaluate how well an optical tracking system can define an object's position and orientation--known as its "pose"--with six degrees of freedom: up/down, right/left, forward/backward, pitch, yaw and roll.


Video: In this segment of the "NIST in 90" series, host Chad Boutin and NIST engineer Roger Bostelman demonstrate why it's important to evaluate how well optical tracking systems can place an object, such as a mobile robot in a factory, in 3-D space.

Credit: NIST

Optical tracking systems work on a principle similar to the stereoscopic vision of a human. A person's two eyes work together to simultaneously take in their surroundings and tell the brain exactly where all of the people and objects within that space are located.

In an optical tracking system, the "eyes" consist of two or more cameras that record the room and are partnered with beam emitters that bounce a signal--infrared, laser or LIDAR (Light Detection and Ranging)--off objects in the area. With both data sources feeding into a computer, the room and its contents can be virtually recreated.

... more about:
»3-D »NIST »cameras »tracking system

Determining the pose of an object is relatively easy if it doesn't move, and previous performance tests for optical tracking systems relied solely on static measurements. However, for systems such as those used to pilot automated guided vehicle (AGV) forklifts--the robotic beasts of burden found in many factories and warehouses--that isn't good enough. Their "vision" must be 20/20 for both stationary and moving objects to ensure they work efficiently and safely.

To address this need, a recently approved ASTM International standard (ASTM E3064-16) now provides a standard test method for evaluating the performance of optical tracking systems that measure pose in six degrees of freedom for static--and for the first time, dynamic--objects.

NIST engineers helped develop both the tools and procedure used in the new standard. "The tools are two barbell-like artifacts for the optical tracking systems to locate during the test," said NIST electronics engineer Roger Bostelman. "Both artifacts have a 300-millimeter bar at the center, but one has six reflective markers attached to each end while the other has two 3-D shapes called cuboctahedrons [a solid with 8 triangular faces and 6 square faces]." Optical tracking systems can measure the full poses of both targets.

According to Bostelman's colleague, NIST computer scientist Tsai Hong, the test is conducted by having the evaluator walk two defined paths--one up and down the test area and the other from left and right--with each artifact. Moving an artifact along the course orients it for the X-, Y- and Z-axis measurements, while turning it three ways relative to the path provides the pitch, yaw and roll aspects.

"Our test bed at NIST's Gaithersburg, Maryland, headquarters has 12 cameras with infrared emitters stationed around the room, so we can track the artifact throughout the run and determine its pose at multiple points," Hong said. "And since we know that the reflective markers or the irregular shapes on the artifacts are fixed at 300 millimeters apart, we can calculate and compare with extreme precision the measured distance between those poses."

Bostelman said that the new standard can evaluate the ability of an optical tracking system to locate things in 3-D space with unprecedented accuracy. "We found that the margin of error is 0.02 millimeters for assessing static performance and 0.2 millimeters for dynamic performance," he said.

Along with robotics, optical tracking systems are at the heart of a variety of applications including virtual reality in flight/medical/industrial training, the motion capture process in film production and image-guided surgical tools.

"The new standard provides a common set of metrics and a reliable, easily implemented procedure that assesses how well optical trackers work in any situation," Hong said.

The E3064-16 standard test method was developed by the ASTM Subcommittee E57.02 on Test Methods, a group with representatives from various stakeholders, including manufacturers of optical tracking systems, research laboratories and industrial companies.

###

The E3064-16 document detailing construction of the artifacts, setup of the test course, formulas for deriving pose measurement error and the procedure for conducting the evaluation may be found on the ASTM website, http://www.astm.org.

Media Contact

Michael E. Newman
michael.newman@nist.gov
301-975-3025

 @usnistgov

http://www.nist.gov 

Michael E. Newman | EurekAlert!

Further reports about: 3-D NIST cameras tracking system

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>