Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New software turns mobile-phone accessory into breathing monitor

14.09.2017

Novel algorithms could allow portable, low-cost thermal cameras to detect breathing problems and monitor stress

Researchers have developed new software that makes it possible to use low-cost, thermal cameras attached to mobile phones to track how fast a person is breathing. This type of mobile thermal imaging could be used for monitoring breathing problems in elderly people living alone, people suspected of having sleep apnea or babies at risk for sudden infant death syndrome (SIDS).


New software allows low-cost, thermal cameras attached to mobile phones to track breathing patterns. The approach compensates for temperature changes and movement, allowing it to be used in places where other sensors might not work.

Credit: Youngjun Cho, University College London

In The Optical Society (OSA) journal Biomedical Optics Express, the researchers report that their new software combined with a low-cost thermal camera performed well when analyzing breathing rate during tests simulating real-world movement and temperature changes.

"As thermal cameras continue to get smaller and less expensive, we expect that phones, computers and augmented reality devices will one day incorporate thermal cameras that can be used for various applications," said Nadia Bianchi-Berthouze from University College London, (UK) and leader of the research team. "By using low-cost thermal cameras, our work is a first step toward bringing thermal imaging into people's everyday lives. This approach can be used in places other sensors might not work or would cause concern."

In addition to detecting breathing problems, the new approach could one day allow the camera on your computer to detect subtle breathing irregularities associated with pain or stress and then send prompts that help you relax and regulate breathing. Although traditional video cameras can be used to track breathing, they don't work well in low-light situations and can cause privacy concerns when used for monitoring in nursing homes, for example.

"Thermal cameras can detect breathing at night and during the day without requiring the person to wear any type of sensor," said Youngjun Cho, first author of the paper. "Compared to a traditional video camera, a thermal camera is more private because it is more difficult to identify the person."

Personal thermal cameras

Thermal cameras, which use infrared wavelengths to reveal the temperature of an object or scene, have been used in a variety of monitoring applications for some time. Recently, their price and size have dropped enough to make them practical for personal use, with small thermal cameras that connect to mobile phones now available for around $200.

"Large, expensive thermal imaging systems have been used to measure breathing by monitoring temperature changes inside the nostrils under controlled settings," said Cho. "We wanted to use the new portable systems to do the same thing by creating a smart-phone based respiratory tracking method that could be used in almost any environment or activity. However, we found that in real-world situations this type of mobile thermal imaging was affected by changes in air temperature and body movement."

To solve these problems, the researchers developed algorithms that can be used with any thermal camera to compensate for ambient temperature changes and accurately track the nostrils while the person is moving. In addition, the new algorithms improve the way breathing signals are processed. Instead of averaging the temperature readings from 2D pixels around the nostrils, as has been done in the past, Cho developed a way to treat the area as a 3D surface to create a more refined measurement of temperature in the nostrils.

Testing in real-world situations

In addition to indoor laboratory tests, the researchers used the mobile thermal imaging approach to measure the breathing of volunteers in a scenario that involved breathing exercises with changes in ambient temperature and in a fully unconstrained test where volunteers walked around inside and outside of a building. During the walking tests, the thermal camera was placed between 20 and 30 centimeters from a person's face using a rig that attached the camera to a hat. A cord then connected the camera with a mobile phone carried by study volunteers. It is also possible to hold a smartphone with an imaging camera about 50 centimeters from the face to measure breathing.

"For all three types of studies, the algorithms showed significantly better performance in tracking the nostril area than other state-of-the-art methods," said Cho. "In terms of estimating the breathing rate, the tests outside the laboratory showed the best results when compared with the latest algorithms. Although the results were comparable to the traditional breathing belt sensor, for mobile situations our approach seems to be more stable because the belt tends to get loose."

Because the new approach is more stable than standard chest belt respiratory sensors, the method could potentially be used to optimize an athlete's performance by providing more reliable and accurate feedback on breathing patterns during exercise.

The researchers took their work one step further by inferring a person's mental load or stress through automatic breathing analysis. They used their thermal imaging software to track the breathing of people who were free to move around while performing various types of tasks, and the results aligned well with findings from studies that used much more sophisticated equipment, indicating the portable thermal-camera based approach could be a useful tool for apps that help people relax.

"By using mobile thermal imaging to monitor only breathing, we obtained results very comparable to what other studies had found," said Bianchi-Berthouze. "However, those studies used complex, state-of-the-art techniques that involved multiple sensors monitoring not just breathing but also heart rate."

The current version of the software doesn't estimate the breathing rate in real time, but the researchers are working to incorporate this capability and to test their algorithms in more real-life situations.

###

Paper: Y. Cho, S. J. Julier, N. Marquardt, N. Bianchi-Berthouze, "Robust tracking of respiratory rate in high-dynamic range scenes using mobile thermal imaging," Biomed. Opt. Express, Volume 8, Issue 10, 4480-4503 (2017). DOI: 10.1364/BOE.8.004480.

About Biomedical Optics Express

Biomedical Optics Express is OSA's principal outlet for serving the biomedical optics community with rapid, open-access, peer-reviewed papers related to optics, photonics and imaging in the life sciences. The journal scope encompasses theoretical modeling and simulations, technology development, and biomedical studies and clinical applications. It is published by The Optical Society and edited by Christoph Hitzenberger, Medical University of Vienna. Biomedical Optics Express is an open-access journal and is available at no cost to readers online at OSA Publishing.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Rebecca B. Andersen
The Optical Society
randersen@osa.org
+1 202.416.1443

Joshua Miller
The Optical Society
jmiller@osa.org
+1 202.416.1435

http://www.osa.org 

Joshua Miller | EurekAlert!

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>