Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research on gigabit wireless communications

11.04.2014

Research on gigabit wireless communications has been presented by researchers from the University of Bristol at the world's leading wireless communications and networking conference, IEEE WCNC 2014, in Turkey earlier this week [Monday 6 to Wednesday 9 April].

The two research papers, led by Andrew Nix, Professor of Wireless Communication Systems and Dr Simon Armour, Senior Lecturer in Software Radio, from the University's Communication Systems and Networks research group in the Department of Electrical and Electronic Engineering, could have significant implications for the future of mobile devices.


This is an example of mmWave.

Credit: Image courtesy of Communication Systems and Networks research group, University of Bristol, copyright © 2014

The millimetre-wave band (58-63GHz) is seen as a perfect candidate for short-range gigabit wireless communications. These networks are envisaged to satisfy the demands of future data-rate hungry applications but few studies have analysed the potential of frequency reuse at 60GHz.

The first paper on gigabit wireless communications could radically enhance the wireless capabilities of future mobile phones and tablets. The research looked at enhanced technologies and algorithms to increase the data capacity and densification of short range wireless networks. The work showed that polarimetric filtering can enable a higher density of active data links. Each millimetre wave link is capable of supporting user rates of up to 7Gbps, with Bristol's research showing that four simultaneous links could be active in a single room. These data capacities are 100x better than those achieved with current Wi-Fi technologies.

The demand for data access by mobile users is doubling every year and is predicted to continue into the foreseeable future. This is pushing service providers to deploy denser networks. Also, since the frequency bands used by 3G and 4G services are close to their capacity limits, there is considerable interest in the use of millimetre wave frequencies for 5G cellular networks.

The second paper considered beamforming as a solution to provide multi-gigabit connections between the 4G and 5G cellular base stations and the core network. The work also supported direct connections to the users. Here beamforming is used to focus the communication waveforms onto specific mobile phones and tablets.

At present it is common for the data rates in a cellular network to be limited by the link to the core network (known as backhaul). The research proposed an efficient adaptive beamforming algorithm to extend the range and data rate while also reducing interference. The paper used compressive sensing to significantly reduce the amount of control data needed to adapt the network to temporal and spatial changes in the channel.

Professor Andrew Nix said: "Both research papers represent an important contribution in the quest to address the ever increasing user demand for higher data rates and capacities. We are fast running out of radio spectrum in the lower frequency bands where cellular and Wi-Fi current operation. As a result we need to exploit high frequencies in future products."

###

Paper one: Polarimetric filtering for an enhanced multi-user 60GHz WPAN system, Djamal Eddine Berraki, Simon Armour, Andrew Nix, PHY11 Session.

Paper two: Application of compressive sensing in sparse spatial channel recovery for beamforming in mmWave outdoor systems, Djamal Eddine Berraki, Simon Armour, Andrew Nix, PHY29 Session.

Djamal Berraki, a PhD student working on the gigabit wireless communications project, has produced a short video to demonstrate the capabilities of the simulator. The video is available on YouTube at http://www.youtube.com/watch?v=c6zsAdeUTuA&feature=youtu.be

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Information Technology:

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Smart Manual Workstations Deliver More Flexible Production
04.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

New High-Performance Center Translational Medical Engineering

26.04.2017 | Health and Medicine

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>