Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research on gigabit wireless communications

11.04.2014

Research on gigabit wireless communications has been presented by researchers from the University of Bristol at the world's leading wireless communications and networking conference, IEEE WCNC 2014, in Turkey earlier this week [Monday 6 to Wednesday 9 April].

The two research papers, led by Andrew Nix, Professor of Wireless Communication Systems and Dr Simon Armour, Senior Lecturer in Software Radio, from the University's Communication Systems and Networks research group in the Department of Electrical and Electronic Engineering, could have significant implications for the future of mobile devices.


This is an example of mmWave.

Credit: Image courtesy of Communication Systems and Networks research group, University of Bristol, copyright © 2014

The millimetre-wave band (58-63GHz) is seen as a perfect candidate for short-range gigabit wireless communications. These networks are envisaged to satisfy the demands of future data-rate hungry applications but few studies have analysed the potential of frequency reuse at 60GHz.

The first paper on gigabit wireless communications could radically enhance the wireless capabilities of future mobile phones and tablets. The research looked at enhanced technologies and algorithms to increase the data capacity and densification of short range wireless networks. The work showed that polarimetric filtering can enable a higher density of active data links. Each millimetre wave link is capable of supporting user rates of up to 7Gbps, with Bristol's research showing that four simultaneous links could be active in a single room. These data capacities are 100x better than those achieved with current Wi-Fi technologies.

The demand for data access by mobile users is doubling every year and is predicted to continue into the foreseeable future. This is pushing service providers to deploy denser networks. Also, since the frequency bands used by 3G and 4G services are close to their capacity limits, there is considerable interest in the use of millimetre wave frequencies for 5G cellular networks.

The second paper considered beamforming as a solution to provide multi-gigabit connections between the 4G and 5G cellular base stations and the core network. The work also supported direct connections to the users. Here beamforming is used to focus the communication waveforms onto specific mobile phones and tablets.

At present it is common for the data rates in a cellular network to be limited by the link to the core network (known as backhaul). The research proposed an efficient adaptive beamforming algorithm to extend the range and data rate while also reducing interference. The paper used compressive sensing to significantly reduce the amount of control data needed to adapt the network to temporal and spatial changes in the channel.

Professor Andrew Nix said: "Both research papers represent an important contribution in the quest to address the ever increasing user demand for higher data rates and capacities. We are fast running out of radio spectrum in the lower frequency bands where cellular and Wi-Fi current operation. As a result we need to exploit high frequencies in future products."

###

Paper one: Polarimetric filtering for an enhanced multi-user 60GHz WPAN system, Djamal Eddine Berraki, Simon Armour, Andrew Nix, PHY11 Session.

Paper two: Application of compressive sensing in sparse spatial channel recovery for beamforming in mmWave outdoor systems, Djamal Eddine Berraki, Simon Armour, Andrew Nix, PHY29 Session.

Djamal Berraki, a PhD student working on the gigabit wireless communications project, has produced a short video to demonstrate the capabilities of the simulator. The video is available on YouTube at http://www.youtube.com/watch?v=c6zsAdeUTuA&feature=youtu.be

Joanne Fryer | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Information Technology:

nachricht Miniscule Mirrored Cavities Connect Quantum Memories
24.06.2015 | Department of Energy, Office of Science

nachricht SASER-Siegfried – Record-breaking Transmission Field Trial
24.06.2015 | EURESCOM European institute for research and strategic studies in telecommunications

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Offshore wind park Westermost Rough officially inaugurated

01.07.2015 | Press release

Siemens Velaro train wins "Red Dot" award

01.07.2015 | Awards Funding

Liquids on Fibers - Slipping or Flowing?

01.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>