Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New report on energy-efficient computing

21.10.2015

Report, the result of jointly funded workshop by SRC and NSF, aligns with White House technology initiatives

A report that resulted from a workshop jointly funded by the Semiconductor Research Corporation (SRC) and National Science Foundation (NSF) outlines key factors limiting progress in computing--particularly related to energy consumption--and novel research that could overcome these barriers.


Inspired by the neural architecture of a macaque brain, this ghostly neon swirl is the wiring diagram for a new kind of computer that, by some definitions, may soon be able to think. In recent years, IBM's cognitive computing group in San Jose, California, has made great strides toward designing a computer that can detect patterns, plan responses, and learn from its mistakes, said Emmett McQuinn, a hardware engineer at IBM who designed the image. To create the image, which was a First Place Winner in the 2012 International Science & Engineering Visualization Challenge, McQuinn first clustered and colored the nodes based on the 77 different functional regions that neuroscientists have identified in the macaque brain. Then, he found a circular arrangement that pleased him.

Credit: Emmett McQuinn, IBM Research - Almaden

The findings and recommendations in the report are in alignment with the nanotechnology-inspired Grand Challenge for Future Computing announced today by the White House Office of Science and Technology Policy. The Grand Challenge calls for new approaches to produce computing systems capable of operating with the efficiency of the human brain. It also aligns with the National Strategic Computing Initiative announced by an Executive Order signed by the President July 29.

Energy efficiency is vital to improving performance at all levels. These levels range from devices and transistors to large information technology systems, and from small sensors at the edge of the Internet of Things to large data centers in cloud and supercomputing systems.

"Fundamental research on hardware performance, complex system architectures, and new memory/storage technologies can help to discover new ways to achieve energy-efficient computing," said Jim Kurose, assistant director of NSF's Directorate for Computer and Information Science and Engineering (CISE). "Partnerships with industry, including SRC and its member companies, are an important way to speed the adoption of these research findings."

Performance improvements today are limited by energy inefficiencies that result in computing systems overheating and experiencing thermal management issues. The electronic circuits in computer chips still operate far from any fundamental limits to energy efficiency, and much of the energy used by today's computers is expended moving data between memory and their central processors.

But while the pace of performance increases has slowed, the amount of data computer users produce is exploding. By 2020, an estimated 44 zettabytes of data (1 zettabyte equals 1 trillion gigabytes) will be created on an annual basis, according to a 2014 IDC study.

"New devices, and new architectures based on those devices, could take computing far beyond the limits of today's technology. The benefits to society would be enormous," said Tom Theis, Nanoelectronics Research Initiative (NRI) executive director at SRC, the world's leading university-research consortium for semiconductor technologies.

In order to realize these benefits, a new paradigm for computing is necessary. A SRC- and NSF-funded workshop held April 14-15 in Arlington, Virginia, convened experts from industry, academia and government to identify key factors limiting progress and promising new concepts that should be explored. The report announced today resulted from the workshop discussions and provides a guide to future basic research investments in energy-efficient computing.

The report builds upon an earlier one on Rebooting the IT Revolution, funded by the Semiconductor Industry Association, SRC and NSF.

Meeting the Nanotechnology Grand Challenge and the goals of the National Strategic Computing Initiative requires multi-disciplinary fundamental research on materials, devices and architecture. NSF and SRC, both individually and together, have a long history of supporting long-term research in these areas to address such fundamental, high-impact science and engineering challenges.

Media Contact

Aaron Dubrow
adubrow@nsf.gov
703-292-4489

 @NSF

http://www.nsf.gov 

Aaron Dubrow | EurekAlert!

Further reports about: Computing Grand Challenge SRC computing systems levels semiconductor technologies

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>