Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New movie screen allows for glasses-free 3-D


Co-developed by Computer Science and Artificial Intelligence Lab, display enables viewers to watch a 3-D movie from any seat in a theater

3-D movies immerse us in new worlds and allow us to see places and things that we otherwise couldn't. But behind every 3-D experience is something that is uniformly despised: those goofy glasses.

A new prototype display could show 3-D movies to any seat in a theater, with no eyewear required.

Credit: Christine Daniloff / MIT

In a new paper, a team from MIT's Computer Science and Artificial Intelligence Lab (CSAIL) and Israel's Weizmann Institute of Science have demonstrated a display that lets you watch 3-D films in a movie theater without extra eyewear.

Dubbed "Cinema 3D", the prototype uses a special array of lenses and mirrors to enable viewers to watch a 3-D movie from any seat in a theater.

... more about:
»3-D movies »3D »MIT »lenses »optics

"Existing approaches to glasses-free 3-D require screens whose resolution requirements are so enormous that they are completely impractical," says MIT professor Wojciech Matusik, one of the co-authors on a related paper. "This is the first technical approach that allows for glasses-free 3D on a large scale."

While the researchers caution that the system isn't currently market-ready, they are optimistic that future versions could push the technology to a place where theaters would be able to offer glasses-free alternatives for 3-D movies.

Among the paper's co-authors are MIT research technician Mike Foshey; former CSAIL postdoc Piotr Didyk; and two Weizmann researchers that include professor Anat Levin and PhD student Netalee Efrat, who was first author on the paper. Efrat will present the paper at this week's SIGGRAPH computer-graphics conference in Anaheim, California.

How it works

Glasses-free 3-D already exists, but not in a way that scales to movie theaters. Traditional methods for TV sets use a series of slits in front of the screen (a "parallax barrier") that allow each eye to see a different set of pixels, creating a simulated sense of depth.

But because parallax barriers have to be at a consistent distance from the viewer, this approach isn't practical for larger spaces like theaters that have viewers at different angles and distances.

Other methods, including one from the MIT Media Lab, involve developing completely new physical projectors that cover the entire angular range of the audience. However, this often comes at a cost of reduced image resolution.

The key insight with Cinema 3D is that people in movie theaters move their heads only over a very small range of angles limited by the width of their seat. Thus, it is enough to display a narrow range of angles and replicate it to all seats in the theater.

What Cinema 3D does, then, is encode multiple parallax barriers in one display, such that each viewer sees a parallax barrier tailored to their position. That range of views is then replicated across the theater by a series of mirrors and lenses within Cinema 3D's special optics system.

"With a 3-D TV, you have to account for people moving around to watch from different angles, which means that you have to divide up a limited number of pixels to be projected so that the viewer sees the image from wherever they are," says Gordon Wetzstein, an assistant professor of electrical engineering at Stanford University who was not involved in the research. "The authors [of Cinema 3D] cleverly exploited the fact that theaters have a unique set-up in which every person sits in a more or less fixed position the whole time."

The team demonstrated that their approach allows viewers from different parts of an auditorium to see images of consistently high resolution.

Cinema 3D isn't particularly practical at the moment: the team's prototype requires 50 sets of mirrors and lenses, and yet is just barely larger than a pad of paper. Matusik says that the team hopes to build a larger version of the display and to further refine the optics to continue to improve the image resolution.

"It remains to be seen whether the approach is financially feasible enough to scale up to a full-blown theater," says Matusik. "But we are optimistic that this is an important next step in developing glasses-free 3-D for large spaces like movie theaters and auditoriums."

Adam Conner-Simons | EurekAlert!

Further reports about: 3-D movies 3D MIT lenses optics

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>