Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New millimeter-wave technology could make future vehicles much safer

06.06.2017

Hiroshima University and Mie Fujitsu Semiconductor Limited (MIFS) today announced the development of a low-power millimeter-wave amplifier that feeds on 0.5 V power supply and covers the frequency range from 80 GHz to 106 GHz. It was fabricated using MIFS's Deeply Depleted Channel (DDC) technology. This is the first W-band (75−110 GHz) amplifier that can operate even with such a low power-supply voltage. Details of the technology will be presented at the IEEE Radio Frequency Integrated Circuits Symposium (RFIC) 2017, running from June 4th to 6th in Honolulu, Hawaii [1].

The W-band covers the frequencies used by automotive radars. Sophisticated driver-assistance and selfdriving will require radars with millimeter-wave beam scanning capability that can "see" day and night and even in adverse weather conditions. Such a "phased array" will consist of up to hundreds of transmitters and receivers. Given the fact that even cars are becoming battery-operated, it is imperative that these circuits be low-power.


Millimeter-wave radars covering several tens of meters could be on cars, bikes, and smartphones. This might create a lot of new applications including games.

Credit: Hiroshima University

Lowering the power-supply voltage is the most effective means of accomplishing that. However, transistor performance drops with voltage and no W-band amplifier has so far operated at as low as 0.5 V . The team of researchers successfully demonstrated a W-band amplifier at 0.5 V by bringing together MIFS's DDC technology and design techniques developed by Hiroshima University. The DDC technology offers high-performance silicon MOS transistors even at low voltages and is currently available from MIFS as a 55-nm CMOS process. The design techniques further improve transistor and circuit performance at millimeter-wave frequencies.

"Now that seriously low-power W-band circuits seem really possible, we should think about what we can do with them. Applications aren't limited to automotive radars and high-speed communications between base stations. What if you have a radar on your smartphone? Today's smartphones can already sense things like acceleration, audible sound, visible light, and Earth's magnetic field.

But the only active probing device is that tiny LED (light-emitting diode) that can illuminate at most a few meters. Add a millimeter-wave radar on a smartphone, and it doesn't have to be a so-called primary radar, which only detects waves reflected back. Your smartphone could respond to waves from your friend's radar and send some signal back. A whole lot of new applications could be created including games," said Prof. Minoru Fujishima, Graduate School of Advanced Sciences of Matter, Hiroshima University.

"Another significance of our 0.5-V W-band amplifier is reliability. We researchers know that some millimeter-wave circuits presented at major conferences, biased at 1 V or higher, won't last long. They degrade as you measure them, within days or even hours, not years, because of the so-called hot-carrier effects. You wouldn't want to get on a car that loses its sight so quickly. The 0.5-V supply voltage will significantly reduce hot-carrier generation," Prof. Fujishima added.

"Compared to conventional CMOS, our DDC transistors offer excellent performance in low-power operations. We have proven that we can extend those outstanding qualities to the millimeter band. I am delighted that our collaboration with Hiroshima University has produced a millimeter-band amplifier. We plan to move forward by building a design environment for maximizing the capabilities of DDC technology," said Mutsuaki Kai, Vice President of Technology Development, Mie Fujitsu Semiconductor.

The research group plans to continue exploring the possibility of low-voltage millimeter-wave CMOS circuits.

###

References [1] K. Katayama, S. Amakawa, K. Takano, T. Yoshida, M. Fujishima, K. Hisamitsu, and H. Takatsuka, "An 80−106 GHz CMOS amplifier with 0.5 V supply voltage," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2017.

Media Contacts: Hiroshima University Public Relations Group Email: koho@office.hiroshima-u.ac.jp

Mie Fujitsu Semiconductor Limited Business Management Division, Public Relations Group Inquiry: https://www.fujitsu.com/jp/group/mifs/en/contact/inquiry.html

Media Contact

Norifumi Miyokawa
pr-research@office.hiroshima-u.ac.jp
81-824-244-427

 @Hiroshima_Univ

http://www.hiroshima-u.ac.jp/index.html 

Norifumi Miyokawa | EurekAlert!

More articles from Information Technology:

nachricht Quantum Technology for Advanced Imaging – QUILT
24.04.2018 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Paint job transforms walls into sensors, interactive surfaces
24.04.2018 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>