Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of producing random numbers could improve cybersecurity

17.05.2016

With an advance that one cryptography expert called a "masterpiece," University of Texas at Austin computer scientists have developed a new method for producing truly random numbers, a breakthrough that could be used to encrypt data, make electronic voting more secure, conduct statistically significant polls and more accurately simulate complex systems such as Earth's climate.

The new method creates truly random numbers with less computational effort than other methods, which could facilitate significantly higher levels of security for everything from consumer credit card transactions to military communications.


An important application for random numbers is in generating keys for data encryption that are hard for hackers to crack.

Credit: James Bowe, via Create Commons Attribution 2.0 Generic license.

Computer science professor David Zuckerman and graduate student Eshan Chattopadhyay will present research about their method in June at the annual Symposium on Theory of Computing (STOC), the Association for Computing Machinery's premier theoretical computer science conference.

An invitation to present at the conference is based on a rigorous peer review process to evaluate the work's correctness and significance. Their paper will be one of three receiving the STOC Best Paper Award.

"This is a problem I've come back to over and over again for more than 20 years," says Zuckerman. "I'm thrilled to have solved it."

Chattopadhyay and Zuckerman publicly released a draft paper describing their method for making random numbers in an online forum last year. In a field more accustomed to small, incremental improvements, the computer science community hailed the method, suggesting that, compared with earlier methods, this one is light years ahead. Oded Goldreich, a professor of computer science at the Weizmann Institute of Science in Israel, commented that even if it had only been a moderate improvement over existing methods, it would have justified a "night-long party."

"When I heard about it, I couldn't sleep," says Yael Kalai, a senior researcher working in cryptography at Microsoft Research New England who has also worked on randomness extraction. "I was so excited. I couldn't believe it. I ran to the (online) archive to look at the paper. It's really a masterpiece."

The new method takes two weakly random sequences of numbers and turns them into one sequence of truly random numbers. Weakly random sequences, such as air temperatures and stock market prices sampled over time, harbor predictable patterns. Truly random sequences have nothing predictable about them, like a coin toss.

The new research seems to defy that old adage in computer programming, "Garbage in, garbage out." In fact, it's the latest, most powerful addition to a class of methods that Zuckerman pioneered in the 1990s called randomness extractors.

Previous versions of randomness extractors were less practical because they either required that one of the two source sequences be truly random (which presents a chicken or the egg problem) or that both source sequences be close to truly random. This new method sidesteps both of those restrictions and allows the use of two sequences that are only weakly random.

An important application for random numbers is in generating keys for data encryption that are hard for hackers to crack. Data encryption is critical for making secure credit card purchases and bank transactions, keeping personal medical data private and shielding military communications from enemies, among many practical applications.

Zuckerman says that although there are already methods for producing high-quality random numbers, they are very computationally demanding. His method produces higher quality randomness with less effort.

"One common way that encryption is misused is by not using high-quality randomness," says Zuckerman. "So in that sense, by making it easier to get high-quality randomness, our methods could improve security."

Their paper shows how to generate only one truly random number -- akin to one coin toss -- but Zuckerman's former student Xin Li has already demonstrated how to expand it to create sequences of many more random numbers.

The website where Zuckerman and Chattopadhyay posted their draft last summer, called the Electronic Colloquium on Computational Complexity, allows researchers to share their work and receive feedback before publishing final versions in journals or at conferences. Computer scientists and mathematicians have been carefully reviewing the article, providing suggestions and even extending the method to make it more powerful.

Media Contact

Marc Airhart
mairhart@austin.utexas.edu
512-232-1066

 @UTAustin

http://www.utexas.edu 

Marc Airhart | EurekAlert!

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>