Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method of producing random numbers could improve cybersecurity

17.05.2016

With an advance that one cryptography expert called a "masterpiece," University of Texas at Austin computer scientists have developed a new method for producing truly random numbers, a breakthrough that could be used to encrypt data, make electronic voting more secure, conduct statistically significant polls and more accurately simulate complex systems such as Earth's climate.

The new method creates truly random numbers with less computational effort than other methods, which could facilitate significantly higher levels of security for everything from consumer credit card transactions to military communications.


An important application for random numbers is in generating keys for data encryption that are hard for hackers to crack.

Credit: James Bowe, via Create Commons Attribution 2.0 Generic license.

Computer science professor David Zuckerman and graduate student Eshan Chattopadhyay will present research about their method in June at the annual Symposium on Theory of Computing (STOC), the Association for Computing Machinery's premier theoretical computer science conference.

An invitation to present at the conference is based on a rigorous peer review process to evaluate the work's correctness and significance. Their paper will be one of three receiving the STOC Best Paper Award.

"This is a problem I've come back to over and over again for more than 20 years," says Zuckerman. "I'm thrilled to have solved it."

Chattopadhyay and Zuckerman publicly released a draft paper describing their method for making random numbers in an online forum last year. In a field more accustomed to small, incremental improvements, the computer science community hailed the method, suggesting that, compared with earlier methods, this one is light years ahead. Oded Goldreich, a professor of computer science at the Weizmann Institute of Science in Israel, commented that even if it had only been a moderate improvement over existing methods, it would have justified a "night-long party."

"When I heard about it, I couldn't sleep," says Yael Kalai, a senior researcher working in cryptography at Microsoft Research New England who has also worked on randomness extraction. "I was so excited. I couldn't believe it. I ran to the (online) archive to look at the paper. It's really a masterpiece."

The new method takes two weakly random sequences of numbers and turns them into one sequence of truly random numbers. Weakly random sequences, such as air temperatures and stock market prices sampled over time, harbor predictable patterns. Truly random sequences have nothing predictable about them, like a coin toss.

The new research seems to defy that old adage in computer programming, "Garbage in, garbage out." In fact, it's the latest, most powerful addition to a class of methods that Zuckerman pioneered in the 1990s called randomness extractors.

Previous versions of randomness extractors were less practical because they either required that one of the two source sequences be truly random (which presents a chicken or the egg problem) or that both source sequences be close to truly random. This new method sidesteps both of those restrictions and allows the use of two sequences that are only weakly random.

An important application for random numbers is in generating keys for data encryption that are hard for hackers to crack. Data encryption is critical for making secure credit card purchases and bank transactions, keeping personal medical data private and shielding military communications from enemies, among many practical applications.

Zuckerman says that although there are already methods for producing high-quality random numbers, they are very computationally demanding. His method produces higher quality randomness with less effort.

"One common way that encryption is misused is by not using high-quality randomness," says Zuckerman. "So in that sense, by making it easier to get high-quality randomness, our methods could improve security."

Their paper shows how to generate only one truly random number -- akin to one coin toss -- but Zuckerman's former student Xin Li has already demonstrated how to expand it to create sequences of many more random numbers.

The website where Zuckerman and Chattopadhyay posted their draft last summer, called the Electronic Colloquium on Computational Complexity, allows researchers to share their work and receive feedback before publishing final versions in journals or at conferences. Computer scientists and mathematicians have been carefully reviewing the article, providing suggestions and even extending the method to make it more powerful.

Media Contact

Marc Airhart
mairhart@austin.utexas.edu
512-232-1066

 @UTAustin

http://www.utexas.edu 

Marc Airhart | EurekAlert!

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>