Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New digital antenna could revolutionize the future of mobile phones

01.09.2016

Combining several antenna elements into a single antenna speeds up data transfer and improves reception and efficiency

Aalto University's Radio Science and Engineering researchers have developed a method that allows antennas to make the shift from the analogue to the digital world. The antennas currently in use are mostly based on technology developed half a century ago.


The phone's antennas are placed in the top and bottom, which means that the phone's touch screen does not cover the entire phone. With the help of new developed method the antennas need less space and the phone display can be made larger and the phone design can be more free.

Credit: Aalto University

'Traditionally one antenna works with either one or a few different frequencies. Now we can take advantage of advanced digital electronics and combine several small antenna elements to work together as one antenna that can be made to operate digitally with any frequency.

In this way, many smartphone applications like GPS, Bluetooth and Wi-Fi will no longer need their own antennas. Instead, all of the phone's data transfer can take place through one digitally controlled antenna. This in turn makes phone design easier and enables a larger screen size relative to phone size as the antenna does not require so much space', explains doctoral candidate Jari-Matti Hannula.

The new antenna also makes it possible to reach the data transfer speed set as the objective for the next generation of phones, which is 100 to 1000 times faster than that of current phones. In addition, battery life will be improved owing to the greater efficiency of the new method.

Antenna control requires new technology

Thanks to the new method, the antenna can have even greater bandwidth, which leads to a higher data transfer speed and improved efficiency. These new antennas may also dispose of the analogue components that traditional antennas use to tune into the desired frequency. This facilitates antenna design and enables the creation of more compact antennas with better radiation efficiency.

With antennas designed using the standard technology, it is possible to obtain either a broad frequency range or high efficiency, but not both at the same time. Antennas' radiation efficiency has in recent times been falling because the frequency range used by mobile phones has been continuously increasing. Poor radiation efficiency leads to a short transmission range, for which network operators are then forced to compensate with a denser network of base stations. Energy is wasted in both the phone and the base station. In addition, increasing the network density is expensive.

Professor of Radio Engineering Ville Viikari believes that the new method will revolutionise the fifth generation of mobile phones and maintain Finland as one of the leading countries in the development of mobile phone antennas. For example, the antenna type developed by the Department of Radio Science and Engineering at the beginning of the 21st century is the main type in use in current phones. Now is the time to forge the solutions for a new generation of mobile devices.

'The next step in the development process is under way with the commencement of tests in cooperation with Huawei using fifth generation mobile phone devices. We are also developing together with Aalto University researchers digital electronic systems for controlling the antennas', Mr Viikari adds.

An article detailing the principles of the method has been published in journal IEEE Antennas and Wireless Propagation Letters. Link to the article http://dx.doi.org/10.1109/LAWP.2016.2602006

Media Contact

Ville Viikari
ville.viikari@aalto.fi
358-504-135-458

 @aaltouniversity

http://www.aalto.fi/en/ 

Ville Viikari | EurekAlert!

More articles from Information Technology:

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

nachricht PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems
11.12.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>