Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nerve Tracts for the Smart City


The Smart City is one of today's major hypes. Everything is to become more progressive, more efficient, cleaner. A lot of projects are working towards this goal. What is lacking, however, is a comprehensive platform that lets a broad range of municipal applications work together. In the European ALMANAC project, Fraunhofer FIT is working with international partners to develop a prototype of such a platform. A key component of this platform is a service-oriented middleware that enables heterogeneous resources, devices and services to cooperate at the semantic level.

The first big hurdle in implementing Smart City projects is to work with the existing municipal services, infrastructures, databases and other resources. Here we must accept as given the current technological situation of all the players involved, including waste disposal systems, electric utility companies, water supply companies and telecom providers.

Only in a second step will it be possible to implement new technologies and to bring them together with the existing systems. This seems to be the only way to produce smart, cost-efficient services for the inhabitants of a city or a region.

This is exactly the problem that the European ALMANAC (acronym for Reliable Smart Secure Internet Of Things For Smart Cities) project works on. It will create an open Smart City platform that provides a comprehensive technological basis for a wide range of Smart City applications.

One key component of the platform is a service-oriented middleware that provides for semantic interoperability of heterogeneous resources, devices and services. Open interfaces to external services make it possible to continually enhance the platform and corresponding applications. Obviously, privacy and secure communication are important aspects here.

The technical work in ALMANAC is driven by the Smart City requirements of the city of Torino. Here we selected three application fields in which to develop and test the ALMANAC platform: waste management, water supply and citizen engagement.

Leading the project on the technical side, Fraunhofer FIT develops the overall system architecture and is involved in developing the waste management prototype. Here, the Irish company SmartBin, world-wide one of the leading suppliers of remote monitoring of waste containers, is an important partner.

"SmartBin let us access real-life data about the fill levels of waste containers. This is an ideal basis for testing the functionality of the ALMANAC platform. And this information is also invaluable for profitability forecasts and for the evaluation of business models", says Marco Jahn, coordinator of the ALMANAC project at the Fraunhofer Institute for Applied Information Technology FIT.

At the moment ALMANAC focuses on collecting data and on integrating existing waste management and water management applications, because here pollution and cost can be significantly reduced without fundamentally altering the existing hardware and software infrastructures.

The ALMANAC consortium ( consists of seven organizations from four different countries. Besides Fraunhofer FIT, the partners include CNet Svenska AB, In-JeT ApS, Telecom Italia Group and City of Torino. Overall coordinator is Instituto Superiore Mario Boella – ISMB. From June 16 to June 18, 2015, they will present the ALMANAC project in Lisbon at IoT Week 2015, the leading Internet of Things conference organized by the European IERC research cluster.

Weitere Informationen:

Alex Deeg | Fraunhofer-Institut für Angewandte Informationstechnik FIT

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>