Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigating the unknown

09.10.2015

A computer algorithm that copies the navigation functionality of humans and animals helps robots navigate unfamiliar spaces.

This robot uses neural schemes similar to humans to navigate an office environment. © 2015 A*STAR Institute for Infocomm Research


This robot uses neural schemes similar to humans to navigate an office environment. © 2015 A*STAR Institute for Infocomm Research

A robot with a navigation system that mirrors the neural scheme used by humans and animals to find their way around has been developed by Agency for Science, Technology and Research (A*STAR) researchers in Singapore [1].

The human navigation function is operated by two types of brain cells — place cells and grid cells. Place cells become active in the brain when we recognize familiar places, while grid cells provide us with an absolute reference system, so we can determine exactly where we are on a map.

The way sailors used to navigate through tracking of relative movement, however, is essential for finding a way through unfamiliar areas, explains Miaolong Yuan from the A*STAR Institute for Infocomm Research team. “A sailor will use cues such as the stars or landmarks to determine where their ship is on a map, and then, as the ship moves, will update its location on the map by observing only speed and direction.”

The human brain uses grid cells, which provide a virtual reference frame for spatial awareness to handle this type of relative navigation. Each time we move through and pass one of the virtual grid points that the brain has set up, the respective grid cell becomes active, and we know our relative movement in relation to those coordinates. By using both place and grid cells for navigation, humans and animals are able to accurately move through the environment.

Yuan and the team have implemented the same neural scheme for robots, using computer programs that simulate the activity of place and grid cells in the brain. Crucial to the computational algorithm is the strength of the feedback mechanism between the grid cells and place cells, and the calibration of the visual signals is integral to the map building process of the computer algorithm.

The algorithm was tested in a robot (see image) that explored a 35 meter x 35 meter indoor office environment. The robot was able to detect loops in the path through the office space and, by using visual cues to recognize areas visited repeatedly, built its own neurological map of the office.

The computer navigation system assists the robot in situations where it is lost in a new environment, says Yuan. “Cognitive maps can help the robot when it is lost, because they can provide global topological information of the navigating environment to help the robot localize itself.”

The A*STAR-affiliated researchers contributing to this research are from the Institute for Infocomm Research

Reference

[1] Yuan, M., Tian, B., Shim, V. A., Tang, H. & Li, H. An entorhinal-hippocampal model for simultaneous cognitive map building. Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 586–592 (2015).


Associated links
Original article from A*STAR Research

A*STAR Research | Research SEA

Further reports about: A*STAR Navigating algorithm grid cells movement navigation system

More articles from Information Technology:

nachricht Switchable DNA mini-machines store information
26.06.2017 | Emory Health Sciences

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>