Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA's ICESat-2 equipped with unique 3-D manufactured part


NASA's follow-on to the successful ICESat mission will employ a never-before-flown technique for determining the topography of ice sheets and the thickness of sea ice, but that won't be the only first for this mission.

Slated for launch in 2018, NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) also will carry a 3-D printed part made of polyetherketoneketone (PEKK), a material that has never been used in 3-D manufacturing, let alone flown in space.

The 3-D manufactured part -- a black bracket holding the instrument's fiber-optic cables -- is visible in the back of the ATLAS instrument.

Credit: NASA

"This is a first for this material," said Craig Auletti, lead production engineer on ICESat-2's only instrument, the Advanced Topographic Laser Altimeter System (ATLAS) now being built at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The part is a bracket that supports the instrument's fiber-optic cables.

PEKK Offers Advantages

Instrument developers chose PEKK because it's strong, but perhaps more important, it's electrostatically dissipative -- that is, it reduces the build up of static electricity to protect electrostatically sensitive devices.

It also produces very little outgassing, a chemical process similar to what happens when plastics and other materials release gas, producing, for example, the "new car smell" in vehicles. In a vacuum or under heated conditions, these outgassed contaminants can condense on and harm optical devices and thermal radiators, significantly degrading instrument performance.

Although 3-D or additive manufacturing is used to create a variety of products, so far, it remains a rare occurrence in spaceflight applications. In fact, the PEKK bracket is believed to be only the second 3-D manufactured part to be flown in a spaceflight instrument, said Oren Sheinman, the ATLAS mechanical systems engineer NASA Goddard.

Three-dimensional parts printed of Ultem 9085 were produced and flown on the International Space Station by the NASA Ames Research Center's Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) program.

Additive or 3-D manufacturing is attractive because it offers a fast, low-cost alternative to traditional manufacturing. With additive manufacturing, a computer-operated device literally prints a solid object, layer by layer, using a high-power optic laser that melts and fuses powdered materials in precise locations using a 3-D CAD model. "Had we manufactured this part classically, it would have taken six to eight weeks. We got it in two days," Sheinman said, adding that costs to the project were up to four times less than with a traditionally machined part.

ATLAS: A Technical Marvel

The bracket, however is just one of the mission's firsts. ATLAS, itself, is a technical marvel, said ATLAS Instrument Scientist Tony Martino. It will be NASA's first space-borne, photon-counting laser altimeter and is expected to usher in a new, more precise method for measuring surface elevations.

As with its predecessor, ICESat-2 is designed to measure changes in ice-sheet elevations in Greenland and the Antarctic, sea-ice thicknesses, and global vegetation. However, it will execute its mission using a never-before-flown technique.

ICESat, which ended operations in 2009, employed a single laser, which made it more difficult to measure changes in the elevation of an ice sheet. With a single beam, researchers couldn't tell if the snowpack had melted or if the laser was slightly off and pointed down a hill. ICESat-2 overcomes those challenges by splitting the green-light laser into six beams, arranged in three pairs, firing continuously at a rapid 10,000 pulses per second toward Earth.

Unlike analog-laser altimetry, which uses analog detectors and digitizes the return signal, ICESat-2 will employ a technique called photon counting. Used in aircraft instruments, photon counting has not yet been used for altimetry in a spaceflight instrument. It more precisely records the time-of-flight of individual photons as they travel from the instrument, reflect off Earth's surface, and then are detected as they return to the instrument's detectors -- measurements that scientists use to calculate Earth's surface elevation.

Perhaps more important to scientists who want to know how the ice sheets change over time, the multiple beams will give scientists dense cross-track samples that will help them determine a surface's slope, while the high-pulse rate will allow ATLAS to take measurements every 2.3 feet along the satellite's ground path -- all at a higher resolution due to the photon counting.

"This is one of the new capabilities," Martino said. "We're getting cross track slope every time the satellite passes over." Furthermore, the satellite will pass over the same area every 90 days during ICESat-2's three-year mission, giving scientists a very detailed multi-year snapshot of how the ice is changing.

"It's almost completely built," Martino said, adding that the spacecraft will fly on the last Delta II launch vehicle. "All functional parts are there and our first comprehensive testing starts in February. We're on track."


For more Goddard technology news, go to

Lori Keesey | EurekAlert!

Further reports about: Goddard Space Flight Center ICESat-2 NASA spaceflight

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>