Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nanoelectronics researchers employ Titan for an electrifying simulation speedup


Team greatly improves system size and time-to-solution for nanoelectronics models

Researchers at ETH Zurich are using America's fastest supercomputer to make huge gains in understanding the smallest electronic devices.

Spatial distribution of the electron current flowing through a silicon gate-all-around nanowire field-effect transistor composed of 55,488 atoms. A voltage (V) is applied to the structure. Half of the oxide-capping layer is removed to shed light on the interior of the transistor where the atoms are colored according to the current they carry: green means no current, whereas red indicates a high concentration.

Credit: Mathieu Luisier, ETH Zurich

The team, led by Mathieu Luisier, focuses on further developing the front line of electronics research - simulating and better understanding nanoscale components such as transistors or battery electrodes whose active regions can be on the order of one-billionth of a meter, or about as long as your fingernails grow in one second.

Though the scales of the investigated objects are small, the team has made big progress toward more efficient computational codes. Its research was selected as a finalist for this year's Association of Computing Machinery's Gordon Bell Prize, one of the most prestigious awards in supercomputing.

The team's award submission is a result of research conducted on the Oak Ridge Leadership Computing Facility's Cray XK7 Titan supercomputer. The OLCF is a U.S. Department of Energy Office of Science User Facility located at Oak Ridge National Laboratory.

Laptops, cell phones and other electronic devices are becoming cheaper and more accessible while also becoming increasingly sophisticated. These advancements are largely because of the ever-shrinking dimensions of their electronic components.

However, developing next-generation hardware now requires scientists and engineers to understand material interactions at extremely small time- and size scales, leading researchers to augment experiment with simulation.

"Our goal is to study nanoscale devices, such as nanotransistors, batteries or a variety of other new devices such as computer memories, optical switches or light emitting diodes on an atomic level," Luisier said. "If you want to make these simulations accurate and truly predictive, you need to use so-called ab initio, or from first principles, simulation methods."

Essentially, ab initio simulations allow researchers to model any atomic system from scratch without the need for pre-calibrated material parameters. Of course, reaching such a level of accuracy is not free. The price is a thousandfold increase in computational complexity compared with, for example, semiempirical approaches that use inputs from experiments to simplify the calculation.

Researchers studying nanoelectronics thus typically have to make a compromise between simulating a realistic system size (at least 10,000 atoms) and using highly accurate ab initio methods.

To this point, though, most ab initio software packages focus on the calculation of material properties such as crystal and electronic structures, lattice vibrations, or phase diagrams and do not account for the real operating conditions - under the application of external voltage, an electron current starts to flow through active nanostructures. These transport phenomena are computationally very demanding and require a dedicated modeling approach.

Luisier and his team, therefore, developed a method for doing ab initio transport simulations that are large enough to investigate nanostructures with sizes relevant to industry and experimental groups. They just needed the right machine to test it.

Two partner codes, one objective

Today's integrated circuits are composed of up to several billion transistors that are closely packed on an area that does not exceed a couple of square centimeters. With nanoelectronics, one could fit thousands of the currently manufactured nanotransistors in the width of a human hair. These systems are so small that researchers must resort to quantum theory to understand their properties.

The team uses two different software packages to accomplish this task. The community code CP2K, developed and maintained by ETH Zurich professor Joost VandeVondele, provides the ab initio description of nanostructures, whereas the OMEN code from Luisier's group performs the quantum transport simulations based on CP2K's inputs. By combining CP2K and OMEN, the team can get a unique "material + device" perspective of atomic systems.

Luisier explained that there are two main challenges for simulating transport through nanoelectronic components. First, researchers must calculate what they call open boundary conditions that couple the simulation with its surrounding environment and enable current flows. As a second step, they must incorporate the created boundary blocks into the Hamiltonian, a matrix that contains all of the interatomic interactions characterizing the device, and finally they must solve the resulting sparse linear system of equations. Using this approach, typical state-of-the-art simulations within the field can accurately model around 1,000 atoms.

With the emergence of hybrid supercomputers, the team realized that they needed a new simulation approach capable of leveraging the potential of CPUs and GPU accelerators. Keeping this idea in mind, two PhD students in Luisier's group, Sascha Bruck and Mauro Calderara, implemented an original scheme allowing the team to simultaneously compute the open boundary conditions on the CPUs and create the appropriate Hamiltonian matrix on the GPUs before a short post-processing phase, then combine both results. This tour de force not only helped offload work to the GPUs but also attacked the problem on two fronts at the same time, significantly reducing simulation time.

"What allowed us to get so much faster and treat really large device structures is that we found a way to efficiently perform most of the work, solving the linear system, on Titan's compute nodes, using extremely fast GPUs, while still keeping the CPUs busy with computing the boundary conditions at the same time," Luisier said.

The team first tested its method on the Swiss National Supercomputing Centre's Piz Daint machine, growing the simulation from 1,000 atoms to 15,000. For Luisier, this was extremely encouraging, but he believed the team could do more.

After these initial and successful runs, the team received time on Titan as part of the Director's Discretionary program. Moving from Piz Daint, with its 5,000-plus compute nodes, to Titan - with upwards of 18,000 nodes - allowed the team to perform a simulation with 50,000 atoms, easily beating the prior benchmark. Luisier also noted that getting to a 50,000-atom simulation did not even use all of Titan's supercomputing power, meaning that larger simulations are not just theoretical, but likely, in the near future.

By finding a method to do ab initio quantum transport calculations on such a large system, the team is the first to run simulations that can correspond with experiments in the field, potentially helping advance research and development for next-generation electronic devices.

"If you just have 1,000 atoms, you can't really simulate a real device," Luisier said. "That would require simulating about 10 times as many of them. With the new method, we can really model something that looks like a transistor or a storage unit at the ab initio level. And the nanowires that we've been investigating have already been fabricated around 10 years ago when experimentalists were not as advanced in producing small structures as they are now. So the maximum of what we can now simulate goes beyond the smallest structures people can actually manufacture in the lab today."

Though the codes' sustained performance is impressive -15 petaflops, or 15 quadrillion calculations per second - Luisier emphasized that these simulations were not performed to set new computational performance benchmarks in the field, but rather were to further research.

"This is really a production code, a code that is used on a day-to-day basis," Luisier said. "What comes out of these runs is not just FLOPS on a computer - these results are used in collaboration with experimentalists at ETH Zürich and abroad. There are a couple of groups very interested in the results because they can explain what these groups observe in their experimental devices -not only in nanotransistors but also in light-emitting components or quantum dot solar cells, to cite just a few examples."


Oak Ridge National Laboratory is supported by the U.S. Department of Energy's Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit

Media Contact

Eric Gedenk


Eric Gedenk | EurekAlert!

Further reports about: ETH Zurich GPUs Laboratory Titan electronic devices nanoscale nanostructures structures

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>



Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

More VideoLinks >>>