Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Miniscule Mirrored Cavities Connect Quantum Memories

24.06.2015

New structures could accelerate progress toward faster computing and high-security data transfer across fiber optic networks.

The Science


Image courtesy of The Englund Group, MIT

Diamond optical cavities allow laser light (green arrow) to excite electrons on atoms held within the cavities, transferring information about the atoms outward via light (red arrow). Similar to funhouse mirrors, these cavities reflect and trap light letting light more readily pick up and transmit information about an atom’s state. This interaction is essential to develop quantum computing systems.

Tiny, nanoscale mirrors were constructed to trap light around atoms inside of diamond crystals, acting like a series of funhouse mirrors. The mirrored cavities in the crystal allow light to bounce back and forth up to 10,000 times, enhancing the normally weak interaction between light and the electronic spin states in the atoms. As a result, a 200-microsecond spin-coherence time – how long the memory encoded in the electron spin state lasts – was produced.

The Impact

The enhanced interactions between light and atoms and the extended spin-coherence times are essential steps toward realizing real-world quantum memories and, hence, quantum computing systems, which could solve some problems faster than conventional systems. Additionally, these advances could significantly impact the development of high-security, long-distance, cryptographic fiber optic communication networks.

Summary

Nanoscale mirrored cavities that trap light around atoms in diamond crystals increase the quantum mechanical interactions between light and electrons in atoms. Such interactions are essential to the creation and the connection of memory for quantum computers. Recent research, performed at the Massachusetts Institute of Technology (MIT) and the Center for Functional Nanomaterials at the U.S. Department of Energy’s Brookhaven National Laboratory, has demonstrated a new process to construct such diamond nanocavities in which memories are encoded inside the electronic spin states of an atomic system, with a memory time exceeding 200 microseconds. This improvement in the coherence time is more than two orders of magnitude better than previously reported times for cavity-coupled single quantum memories in solid state systems. The fabrication of the optical cavities relied on a new silicon hard-mask fabrication process that applies mature semiconductor fabrication methods for patterning high-quality photonic devices into unconventional substrates.

Funding

Fabrication and experiments were supported in part by the Air Force Office of Scientific Research (AFOSR Grant No. FA9550-11-1-0014). Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886. Support is also acknowledged from the Alexander von Humboldt Foundation, the NASA Office of the Chief Technologist’s Space Technology Research Fellowship, the AFOSR Quantum Memories Multidisciplinary University Research Initiative, and the National Science Foundation Integrative Graduate Education and Research Traineeship Program, Interdisciplinary Quantum Information Science and Engineering (iQuISE).

Publications

L. Li, T. Schröder, E.H. Chen, M. Walsh, I. Bayn, J. Goldstein, O. Gaathon, M.E. Trusheim, M. Lu, J. Mower, M. Cotlet, M.L. Markham, D.J. Twitchen, and D. Englund, “Coherent spin control of a nanocavity-enhanced qubit in diamond.” Nature Communications 6, 6173 (2015). [DOI: 10.1038/ncomms7173External link]

Contact Information
Kristin Manke
kristin.manke@science.doe.gov

Kristin Manke | newswise
Further information:
http://www.science.doe.gov

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>